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Abstract

In many parts of the world, the number of criminal groups that compete in the same space
is rising, which could have important implications for the level of crime and well-being in
these settings. I study the impact of the number of Drug Trafficking Organizations (DTOs)
on homicides and school dropout in Mexican municipalities between 2006 and 2018, a country
with a high number of DTOs. To estimate the causal effects of different numbers of DTOs on
outcomes, I develop a novel selection model using instrumental variables based on DTOs’ time-
varying distance to their existing base of operations. My selection model delivers interpretable
treatment effects for each possible number of DTOs, while conventional two-stage least squares
estimators do not. The selection model can be used to examine market structure effects for
other industries as well. I find that as DTOs increase, there is a significant increase in homi-
cides. Having 4 DTOs instead of 1 is associated with a six-fold increase in homicides. Moreover,
the relationship is increasing and convex, contrary to popular theoretical models of crime. Ad-
ditionally, I find that more DTOs lead to higher rates of school dropout, which is concentrated
among older male students. Centralized administrative data confirm that dropouts are not con-
founded with migration of students out of violent areas. I find no effects for younger or female
students. The gender and age patterns suggest an opportunity cost channel, with DTOs raising
the opportunity cost of schooling for older adolescent males. Consistent with this mechanism,
I find that more DTOs result in higher numbers of male (but not female) adolescent homicide
victims and higher numbers of adolescent criminals listed as school dropouts in police records.
This paper is the first to show the non-linear impacts of the number of criminal groups on crime,
and the first to document the causal effects of the number of criminal groups on human capital.
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1 Introduction

In many countries the number of criminal organizations has been rising, and these groups

are often competing in the same space.1 The number of criminal organizations is likely

a key parameter determining violence and local outcomes. This study’s setting, Mexico,

serves as a prime illustration, with several large Drug Trafficking Organizations (DTOs)

competing side-by-side.2 As a result Mexico is in a period of extreme violence with a homicide

rate of 29 homicides per 100,000 inhabitants in 2018, almost six times larger than the US

homicide rate (INEGI, 2020; FBI, 2023). The violence is so egregious Mexico had more

homicides in 2015 than Afghanistan or Iraq (Insight Crime, 2016). Naturally, the increase

in violence and crime burdens surrounding communities, hindering economic growth and

human development. Many qualitative accounts argue the growth in DTOs’ number and

presence is a major reason for increased violence and crime (Medel and Thoumi, 2014).

In this paper I estimate the causal effect of the number of DTOs in a Mexican

municipality on two main outcomes: school dropout and homicides. I examine

homicides as a primary outcome in order to understand how the number of DTOs shapes

violence and crime. Empirically estimating the relationship between the number of DTOs

and homicides is important for policy and theoretical reasons. Ideally, crime agencies and

other policymakers would deploy enough resources to eliminate all DTO presence. However

this ideal policy is unrealistic, given the observed prevalence of DTOs. A more realistic policy

would be to deploy resources to discourage an additional DTO from entering or remove an

existing incumbent.3 Knowing how crime responds to the number of DTOs would be needed

to determine this policy’s effectiveness. For example, if the violence-to-DTO relationship is

convex, removing one DTO in a location with many others would lead to disproportionate

1Data tracking criminal organization presence over time is scarce. However, this paper’s data tracks
more than 60 groups in Mexico in 2019, up from 8 in 1990. Colombia has more than 25 criminal groups
(Colombiano, 2023), many created since 2011 (McDermott, 2017). Kenya had 33 identified groups in 2010
versus 326 in 2017 (Centre, 2018). Snapshot reports of 2020 also show large numbers of criminal groups in
different cities. Cape Town counted with more than 90 gangs (Dziewanski, 2020), and Chicago had more
than 50 (NBC, 2020) during 2020.

2Mexican DTOs are commonly called cartels. This is a misnomer because these organizations do not
collude to raise prices of the goods they offer. Throughout this paper I refer to them as Drug Trafficking
Organizations (DTOs) instead.

3The Mexican government regularly targets DTOs to reduce their scope of operations (Jones, 2016).
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reductions in homicides. Note that to answer this question, a binary comparison of any

DTO vs. none is uninformative. Instead, we require the full relationship, or dose response

function, of violence on the number of DTOs. Furthermore, we need a flexible estimation

procedure to allow for non-linearities, since these non-linearities are what influence policy

effectiveness.

Estimating the violence-to-DTO relationship is also of theoretical interest. While many

theoretical models predict an increasing, concave relationship between violence and num-

ber of criminal organizations (Hirshleifer, 1995), other models can yield a decreasing or

non-concave relationship (Gama and Rietzke, 2019). Given the ambiguity of these mod-

els, empirically estimating the violence-to-DTO relationship can help adjudicate between

existing theoretical models of crime and violence.

I then examine whether increased DTO presence reduces human capital accumulation by

looking at their effect on school dropout. DTOs might increase dropout through either a

disruption channel, in which increased violence disrupts schooling activities or commuting

risk, or through an opportunity cost channel, in which DTOs raise the opportunity cost of

school by offering adolescents better opportunities in the criminal sector. Indeed, prior work

has shown criminal organizations frequently rely on adolescent males for labor (Carvalho

and Soares, 2016). Nonetheless, establishing the channel through which criminal market

structure impacts schooling is key for determining appropriate policy responses. If dropout

increases due to disruption, then mobilizing policing resources around schools or ensuring

safe travel corridors for students is sensible. If instead dropout is driven by opportunity

costs, then policies reducing the cost of schooling, like conditional cash transfers, are more

promising. Under this scenario, policies raising the returns to schooling would not only boost

human capital, but would also reduce DTO recruitment capacity and ultimately violence.

Indeed, a recent article in Science argues reducing DTO recruitment would be more effective

than traditional policing to reduce violence in Mexico (Prieto-Curiel et al., 2023).

However, estimating the effects of the number of DTOs is challenging for two reasons.

First, there is a classic selection problem, since DTOs endogenously select where to oper-

ate. Indeed, I find DTOs tend to select richer areas in Mexico. To account for endogenous

selection, existing papers examining the impacts of criminal organizations adopt difference
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in differences (DID) approaches (Monteiro et al., 2022; Biderman et al., 2019; Bruhn, 2021).

While plausible in other settings, a DID analysis places important restrictions on DTOs’

selection patterns that are unrealistic in my paper’s context. A chief concern with a DID

analysis is the possibility of forward looking entry decisions on the part of DTOs. As em-

phasized in Ghanem et al. (2023), if DTOs have appropriate expectations on how entry

impacts their profits and operations, then a parallel trends assumption would not hold, since

DTOs use their expectations to effectively select on the trend of potential outcomes. Given

DTOs’ scale and longevity, it is likely they are able to make reasonable forecasts about future

profitability conditional on entry decisions.

Instead of DID, I utilize instrumental variables in a selection model that

accommodates forward looking DTO entry decisions. For identification, I leverage

the sudden and large expansion in DTO presence between 2006 and 2018. I use DTO’s

one-year lagged distance to their existing operations as instrumental variables. The logic

behind these instruments is simple. The intuition is that DTOs, say Sinaloa Cartel, observes

both its own proximity to a target municipality and also observe its rivals’ proximity, say

Los Zetas. DTOs then decide to enter based on their own and rivals’ proximity. Indeed,

first stage estimates indicate DTOs behave as strategic rivals: DTOs are more likely to

enter when the DTO itself is closer, but are less likely to enter when their competitors are

closer. Next, I show that after controlling for municipality fixed effects, lagged distance is

uncorrelated with several indicators of economic performance or the number of police officers

in municipalities. This suggests one-year lagged distance is indeed a viable instrument for

DTO presence. Furthermore, I argue the exclusion restriction holds for these instruments

given the limited scope for spillovers across municipalities with and without DTOs.4

Nonetheless, there is an important methodological challenge when using these instru-

ments. As mentioned previously, a binary comparison of any amount of DTOs relative to

none would not detect policy-relevant nonlinearities. Instead, to flexibly estimate these non-

linearities, the most appropriate solution is to estimate a separate treatment effect for each

possible number of DTO present. However, conventional estimators struggle with multiple

4I exhaustively discuss several possible violations to the exclusion restriction in Section 4.1, page 22, and
present evidence and arguments explaining why these violations are unlikely in my paper’s context.
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treatments. Even with valid instruments, conventional Two Stage Least Squares (TSLS)

typically cannot deliver interpretable causal estimates for multi-valued treatments (Heck-

man and Urzúa, 2010; Bhuller and Sigstad, 2022; Mountjoy, 2022; Kirkeboen et al., 2016).

To clarify the intuition behind the problem, consider again the Sinaloa Cartel and one of its

rivals, Los Zetas. If Sinaloa Cartel is already operating near a municipality, it is more likely

to enter. Yet Los Zetas also observes Sinaloa’s proximity and Los Zetas may itself be less

inclined to enter in order to avoid competition. In aggregate, a reduction in Sinaloa Cartel’s

proximity will induce some municipalities to receive more active DTOs (as Sinaloa enters),

while other municipalities will see fewer DTOs, as Los Zetas does not enter. A shift in the

instrument therefore leads to an unclear treatment dose, and TSLS fails to make the correct

counterfactual comparison. As a result, multi-valued TSLS estimates typically result in a

combination of different treatment effects, complicating their interpretation.5

In place of conventional TSLS or DID estimators, I implement a novel selection model

to estimate average treatment effects for different “doses” of active DTOs in a Mexican

municipality.6 The model is estimated with a simple Heckman (1979) two-step approach,

where I use first-stage probabilities to selection correct for the observed DTO count in the

second stage regression. The role of the instruments is to shift the entry probabilities without

directly affecting second stage outcomes, allowing me to estimate the effects of DTO entry on

outcomes. For the first stage, I borrow from the industrial organization literature to

model DTO entry as a dynamic firm-entry game, therefore allowing for forward

facing entry decisions. Additionally, I lay out which assumptions facilitate this dynamic

interpretation and argue they are plausible in my setting. After dynamic entry decisions

are made, the DTOs’ individual entry decisions then jointly determine the treatment dose,

the number of active DTOs in a municipality. The main benefits of the model are twofold.

First, my model allows DTOs to be forward looking and overcomes an important challenge

to DID designs. Second, it delivers interpretable causal estimates for each dose of treatment,

5For example, suppose one “dummies out” the number of active DTOs in a TSLS regression, and there is
a maximum of 2 DTOs. The coefficient for 1 DTO will be a combination of the effect of 1 DTO vs 0 DTOs,
along with the effect of 1 DTO relative to 2 DTOs. This is true even if the TSLS is just or over-identified.

6Other treatment effect parameters, like the average treatment effect on the treated (ATT) can also be
computed with my model, following Lee and Salanié (2018). I focus instead on average treatment effects
(ATEs) of DTO presence for simplicity, and since the ATEs are informative for untreated units, of which
there are many. Roughly half of Mexican municipalities never received a DTO during my sample years.
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which is required to study the policy relevant non-linearities mentioned earlier. As a result,

I trace out the entire dose response function of homicides and school dropout as a function

of active DTOs.

I find an increasing and convex relationship between the number of DTOs

and homicides. To get a sense of the convex relation, relative to no DTO, the effect of

4 DTOs is 6 times larger than the effect of 1 DTO. In contrast, the effect of 7 DTOs is 22

times larger than the effect of 1 DTO. These results suggest that reducing DTO presence

in areas with a large count of DTOs provides disproportionate reductions in homicides, a

policy relevant finding. These estimated non-linearities vindicate the selection model, since

a simpler linear or binary framework necessarily misses this relationship.

Furthermore, the convex effects disagree with popular models of crime which predict an

increasing concave relationship (Hirshleifer, 1995). While it is beyond the scope of this paper

to comprehensively investigate the discrepancy between my estimates and these theoretical

predictions, I offer some speculative reasons. To do so, it is important to understand the

possible channels through which the number of DTOs affects homicides. I focus on two.

First, there is a competitive effect. As DTOs increase, we expect DTOs to compete more.

This is the main channel considered in typical theoretical models. Second, I speculate there

is a criminal capital effect with DTO entry, which is typically not present in theoretical

models. DTOs in Mexico have extensive criminal know-how and connections with many

illicit markets. I argue these connections and know-how are a form of criminal capital which

impacts local crime, and helps explain the discrepancy between my estimates and some

models of crime. While I cannot examine these channels separately, my results do point out

that a competition mechanism alone cannot explain all the findings, since I find an increase

in homicides even with a monopolist DTO, when there is no DTO competition.

For my other primary outcome, school dropout, I find statistically significant positive

effects, and these effects are linear. An additional DTO increases ninth grade dropout rates

by 1-2 percentage points. Importantly, the effects are entirely concentrated among ninth

grade males. I fail to find an effect for females or younger grades. This pattern of results

suggests disruption is not the primary driver of the dropout effects, since we would expect

at least some effects for younger grades or female students. Indeed, heterogeneity analysis
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by previous year’s homicides reveals that locations with more violence last year do not have

higher dropout rates. As another possible mechanism, I examine migration directly with

centralized administrative records across the universe of schools, available for a subset of

years. I find that student transfers from high DTO municipalities to other areas do not

explain the dropout results in the main analysis, indicating that the dropout effects reflect

the end of students’ educational progress.

Moreover, by analyzing data on adolescent crime, I find direct evidence that the

dropout is driven by the opportunity cost channel. In particular, I find that overall

adolescent crimes increase with more DTOs. Even more specifically, police records reveal

that crimes in which perpetrators are middle school dropouts increase with the number of

DTOs. Middle school dropouts are the primary dropout “compliers” affected by increased

DTO presence since I find dropout effects for ninth grade, the last grade in Mexican middle

school. In addition I find homicides with male, adolescent victims aged 15-18 increase with

more DTOs. These are precisely the age ranges we expect the ninth grade students (typically

aged 14) to be at risk for homicide, given previously documented criminal career trajectories

(Carvalho and Soares, 2016). The constellation of results therefore suggests that ninth grade

dropouts are in fact entering criminal activity. As a result, DTOs affect school dropout by

drawing students into criminal activities through an opportunity cost channel, not through

disruption. These results highlight the promise of policies changing the opportunity cost

of schooling to not only increase human capital achievement, but also reduce violence by

reducing DTO recruitment, as highlighted in Prieto-Curiel et al. (2023).

How do my preferred estimates compare to more conventional models? DID estimates

using OLS systemically underestimate the effects of DTO entrance on homicides, with some

estimates being 5 times smaller than my primary results. OLS estimates are also zero for

school dropout. I argue that DTOs’ selection patterns explain this discrepancy. I show

descriptively that DTOs select into richer areas of Mexico. The areas that DTOs enter have

more police officers and higher education achievement in general, and are hence precisely

the areas with most resources to counteract DTOs’ negative effects. A linear TSLS model

also estimates a positive effect of DTOs on homicides, but fails to find an effect for dropout.

Given the complications with TSLS, which I explain in Section 5, it is unsurprising that the
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TSLS results differ from my main results.

This paper contributes to several strands of literature. First, I contribute to the literature

examining the impact of crime on educational choices. To my knowledge, this is the first

paper studying the effects of the number of criminal organizations on educational

outcomes. Furthermore, I find evidence specifically in favor of an opportunity

cost channel. In this aspect, the closest paper to mine is Sviatschi (2022), who also finds

a decrease in schooling outcomes in response to an expansion in criminal activity. However,

Sviatschi (2022) uses variation in the international price of coca, a labor-intensive crop

well suited to child cultivation, to show that Peruvian school children are more likely to

leave school and engage in future crime. I find a similar effect and mechanism through an

entirely different source of variation, namely increased DTO presence. My results therefore

build on Sviatschi (2022) by showing the number of criminal organizations can have similar

effects to natural resource shocks. Furthermore, a wider literature has examined the effect

of violence and conflict on educational attainment in Mexico and other developing countries,

mainly through a disruptive channel (Brown and Velásquez, 2017; León, 2012; Lopez Cruz

and Pairolero, 2019). Other papers corroborate these findings by showing that hyper-local

violent events generally decrease school performance as measured by test scores (Chang

and Padilla-Romo, 2022; Jarillo et al., 2016; Monteiro and Rocha, 2017). I compliment

these papers by showing that increased criminal organizations affect schooling through an

opportunity cost channel.

A second contribution is documenting that crime and violence increases convexly

with the number of criminal groups. Existing papers either do not examine non-

linearities between crime and number of criminal groups (Bruhn, 2021; Monteiro et al.,

2022; Alcocer, 2023), or rely on event study designs with restrictive assumptions on criminal

entry (Sobrino, 2020). In contrast, I leverage instrumental variables to flexibly estimate

potential non-linearities. More broadly, I contribute to the extensive literature studying the

drivers of crime in the developing world (Olken and Barron, 2009; Berman et al., 2017; Dube

and Vargas, 2013; Wright, 2015; McGuirk and Burke, 2020; Dix-Carneiro et al., 2018; Dell

et al., 2019; Dell, 2015; Calderón et al., 2015; Lindo and Padilla-Romo, 2018). I complement

these papers by showing the number of criminal groups is an important driver of crime, and
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by documenting the convex shape between violence and number of DTOs.

A third empirical contribution of my paper is to empirically document that criminal

groups are strategic rivals. An important question concerning criminal organizations and

DTOs is the nature of their competition, specifically whether they are strategic rivals or

strategic complements. While it might be tempting to assume they are rivals, this needn’t be

the case, they may be complements. For example, criminal organizations have a vested inter-

est in degrading government institutions and capacities. As such, it could be the case criminal

groups are complementary to each other, as they can exploit agglomeration economies to fur-

ther weaken the state. However, my first stage estimates indicate that DTOs in fact behave

like strategic rivals. To my knowledge, this is the first empirical evidence showing criminal

organizations behave like strategic rivals, a critical behavior to understand when examining

criminal competition. There is a related literature examining how criminal organizations

interact with the state, but these papers do not empirically investigate how criminal organi-

zations interact with one another (Trejo and Ley, 2018; Acemoglu et al., 2020; Daniele and

Dipoppa, 2017; Alesina et al., 2019).

A final contribution of the paper is to bring together firm entry models from industrial

organization (IO) with the modern treatment effects literature in order to examine the causal

impacts of market structure on downstream outcomes. My innovation is to estimate the

effects of market structure, measured as the number of groups in my application, within a

heterogeneous treatment effect framework (Heckman et al., 2006a; Lee and Salanié, 2018;

Mogstad et al., 2018), in contrast to existing empirical work.7 Of course, there exists a rich

literature in industrial organization examining the effects of market structure on downstream

outcomes, which use different empirical strategies. However, none of these strategies allow

for heterogeneous treatment effects. A few papers use instruments combined with TSLS

(Olivares and Cachón, 2009; Hackl et al., 2014; Jeanjean and Houngbonon, 2017). These

papers ultimately assume a constant treatment effect. Another popular empirical strategy

is a structural approach, where the effects of market structure on outcomes are modeled

according to a structure.8 These papers then study how entry can endogenously affect

7My paper is an application of Lee and Salanié (2018), which allows for heterogeneous effects. I tailor
the model for dynamic entry decisions, in line with the industrial organization literature.

8A typical example is modeling the effect of market structure of prices using a linear or logit demand
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outcomes, for instance prices. (Ryan, 2012; Collard-Wexler, 2013; Holmes, 2011; Ciliberto

et al., 2021). This approach tends to be computationally challenging and requires correctly

modeling the effects of market structure on downstream outcomes.9 Last, a few studies

have employed a similar approach to my paper and use a selection correction to account

for endogenous market structure (Mazzeo, 2002; Jeanjean and Houngbonon, 2017; Hackl

et al., 2014). All of these papers are for static models only, and firms cannot be forward

looking. These papers therefore do not address a key limitation of DID designs, since firms

are not allowed to be forward looking. Overall, I provide a tractable way to examine the

effects of market structure on downstream outcomes, without having to estimate

a full structural model, allowing for dynamic agents, and within a heterogeneous

treatment effect framework.10

The rest of this paper is organized as follows. Section 2 provides context on the Mexican

War on Drugs and its DTOs. Section 3 describes the data sources used and shows descriptive

statistics. Section 4 describes the empirical strategy and shows evidence in support of the

proposed instruments. Section 5 provides preliminary results TSLS results and argues TSLS

is an inappropriate strategy in my setting. Section 6 presents the main model used for

estimation while Section 7 describes estimation details. Section 8 discusses the results and

Section 9 concludes.

2 The Mexican War on Drugs and Drug Trafficking

Organizations

I first provide context on the Mexican War on Drugs and Mexico’s DTOs. I describe the

sudden and unexpected expansion of DTOs across Mexico beginning in 2006 due to a radical

shift in government policy. Furthermore I provide background on the 8 large DTOs I study.

system.
9Of course, the benefit of the structural approach is the evaluation of counterfactual policies, which I do

not pursue in this paper.
10A closely related paper is Balat and Han (2022) which derives informative bounds based on shape

restrictions for a static complete information entry game. In contrast, my framework models the first
stage as a private information entry game involving different groups, which is a more common model in IO
(Aguirregabiria et al., 2021), and results in point estimates instead of parameter bounds.
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A major feature of these DTOs is their decentralized nature, with their internals actors being

largely unconnected amongst each other. DTOs’ decentralized structure hinders their

ability to execute a long-term, cross-regional expansion plan, which is important for

the validity of my proposed instrument.

2.1 Mexican War on Drugs

The Mexican War on Drugs refers to the ongoing conflict between the Mexican government

and powerful Drug Trafficking Organizations (DTOs) that intensified in the 2000s. The roots

of this war can be traced back to the 1980s when the United States began implementing

stricter drug policies, leading to the relocation of major drug trafficking routes from the

Caribbean to Mexico (Medel and Thoumi, 2014). As a result, between the 1980s and 2000s

Mexican DTOs established their dominance over the profitable drug trade into the US.

In spite of the increase of drug trafficking, the period between the 1980s and the early

2000s was a relatively peaceful time in Mexico. Several scholars indicate that a tacit un-

derstanding between the Mexican government and DTOs fostered a relatively peaceful en-

vironment (Snyder and Duran-Martinez, 2009; Shirk and Wallman, 2015). The hegemonic

political actor during this time was the PRI (Partido Revolucionario Institucional) party,

which ruled Mexico uninterruptedly for much of the 20th century. The PRI party had an

accommodating relationship with DTOs: In exchange for bribes, the government did not

harass the DTOs (Medel and Thoumi, 2014).

This panorama changed in the 2000s, when the PRI party lost power for the first time. In

the 2000 election to the opposition PAN party (Partido Acción Nacional) gained power, led

by President Vicente Fox. The pact between the government and DTOs became untenable

as new political actors gained power and previous relationships between government officials

and DTOs were eroded (Snyder and Duran-Martinez, 2009). The Fox regime adopted a

confrontational approach towards the DTOs, even capturing a prominent DTO leader, and

as a result drug-related violence began to increase (Medel and Thoumi, 2014).

The year 2006 marked a turning point in the struggle between the new government and

DTOs. President Calderón of the PAN party replaced the Fox administration and promptly

instituted a drug trafficking crackdown of unprecedented scale. The Calderón administration
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deployed 45,000 troops to combat smuggling and between 2006 and 2008 alone 184 smugglers

were extradited to the United States (Medel and Thoumi, 2014).

Several studies have by now documented the crackdown during the Calderón admin-

istration led to a sustained increase in homicides and drug-related violence. Dell (2015)

documents that municipalities narrowly won by PAN experienced increases in violence. The

crackdown likely spurred further violence by weakening incumbents and encouraging new

entrants. Other studies have shown that when a top DTO kingpin is captured, homicides

tend to increase. This spike in violence is attributed to the organization’s weakening after

government intervention, which often leads to heightened competition in the affected area

(Shirk and Wallman, 2015; Lindo and Padilla-Romo, 2018; Calderón et al., 2015).

Violence did not stop after the Calderón administration. In 2012, the PRI party regained

control of the presidency with the Peña Nieto. The new administration tried a less militarized

approach and increased the federal police force by 35000. Nonetheless, within a year the

president had mobilized military troops to the state of Michoacán (Medel and Thoumi,

2014). Despite the attempted change in policy, the administration continued with many of

the Calderón crackdown policies.

These dynamics can clearly be seen in Figure 1. The solid line shows the number of homi-

cides, with axis on the left. There is a dramatic rise in homicides after 2006, which decreased

slightly during 2012. However the increase resumed and by 2018 homicides had more than

tripled relative to the 2000 baseline. Simultaneously DTOs expanded their footprint across

Mexico. The dashed line of Figure 1 counts the number of municipalities with at least one

DTO in Mexico using the right axis. The number of municipalities with some DTO presence

increased form roughly 200 in 2005 to more than 700 in 2018. Due to the tremendous rise

in violence during the 2006 crackdown, I limit the sample years of this paper to be between

2006 and 2018.

2.2 Mexico’s Drug Trafficking Organizations

Mexican DTOs have evolved into large transnational operations engaged in a diverse range

of activities. Apart from drug trafficking, they have expanded their operations to include oil

theft (Franco-Vivanco et al., 2023; Alcocer, 2023), extortion and kidnapping, among others
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Figure 1: Homicides and DTO Presence
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Notes: This figure plots the number of homicides by year in Mexico in the blue solid line, displayed on the
left axis. The red dashed line displays the number of municipalities with at least one of the 8 large DTOs
studied in this paper, displayed on the right y-axis. The 8 DTOs are mentioned in Section 2.2.

(Correa-Cabrera, 2021). Their operational scale and scope resemble that of multi-product,

multi-national firms in the legitimate business world.

Furthermore DTOs differ in their practices, just like legitimate businesses operating

within the same industry. For example, while the Sinaloa Cartel focuses primarily on drug

trafficking as its core revenue stream, Los Zetas have carved a niche for themselves in the

realm of extortion, and they are often regarded as employing more ruthless methods com-

pared to other DTOs (Correa-Cabrera, 2021).

A pivotal aspect that sets DTOs apart from other businesses is their decentralized nature,

which shapes their operations and behavior significantly. In general, criminal organizations

exhibit low capacity to give top-down orders and effectively supervise lower-ranking members

(Pereyra, 2012; Natarajan, 2006). For example, Benson and Decker (2010) interview arrested

drug traffickers and finds that actors within these organizations operate independently and

are often disconnected from other crucial actors within the same organization.

The lack of coordination within DTOs has two important implications for this paper’s

empirical strategy. First, the lack of coordination complicates the establishment and conti-

nuity of inter-DTO alliances. The lack of coordination hampers DTO’s ability to negotiate

and enforce agreements between organizations (Pereyra, 2012). Second, the decentralized

organizational structure of DTOs limits their capacity to execute extensive multi-year ex-
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pansion plans within Mexico. With no centralized command structure, DTOs are curtailed

in their ability to orchestrate coordinated efforts across Mexico. DTOs’ decentralized nature

is central to the identification argument in Section 4

This paper focuses on the eight largest DTOs in Mexico.11 The selection of these DTOs

is based on their mentions in the DEA’s National Drug Threat Assessment reports from

2008 to 2018. Notably, these DTOs represent the largest and most significant players in the

Mexican drug trade, regularly involved in trafficking substantial quantities of drugs into the

United States. Moreover, their operations span vast territories across Mexico. At the start

of my study period, 2006, not all of these 8 large DTOs existed and three of them were

created after 2006. Table A1 lists the years when the DTOs are observed in my data. The

three DTOs splintered off from preexisting organizations.12

Figure 2: Any DTO Presence, 2006 and 2018

Notes: This figure plots municipalities with any of the 8 large DTOs studied in this paper in black. The
gray area are municipalities with no DTO presence. The left panel plots presence in 2008, the right panel
plots presence in 2018.

This fragmentation is a feature of Mexican DTOs. In addition to the creation of three

large DTOs after 2006, the paper’s study period also witnessed the emergence of several

smaller DTOs. The phenomenon of fragmentation has garnered attention from various schol-

11These groups are: Sinaloa Cartel (Cártel de Sinaloa), Los Zetas, Juárez Cartel (Cártel de Ju’arez ),
New Generation Jalisco Cartel (Cártel Jalisco Nueva Generación), Beltran-Leyva Organization, Gulf Cartel
(Cártel del Golfo), Michoacan Family (Familia Michoacana), Knights Templar (Caballeros Templarios).

12Los Zetas splintered from Cártel del Golfo. Caballeros Templarios splintered from Familia Michoacana
and Cártel Jalisco Nueva Generación emerged from the defunct Milenio Cartel.
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ars (Pereyra, 2012; Medel and Thoumi, 2014). However, this study does not concentrate on

these smaller groups for three reasons. First, their relatively small size limits their signif-

icance, as they lack access to the highly lucrative US drug trade (Pereyra, 2012). Second,

the fragmented DTOs operate on a much smaller scale compared to the 8 larger DTOs. The

data in this study bears this out: in addition to the 8 large DTOs, the data tracks 64 smaller

DTOs. Among all observations during the study period with any DTO presence (encom-

passing the 8 large and 64 smaller DTOs), the 64 smaller groups account for roughly 32% of

these instances, while the 8 larger DTOs make up the remaining 68%. Last, these smaller

DTOs predominantly operate within limited regions and demonstrate minimal expansion

into new areas. Consequently, their analysis does not align with the empirical strategy of

this paper.

Figure 2 displays the expansion of the 8 large DTOs between 2006 and 2018. As we can

see there was a significant of DTO presence during this time period. The 8 large DTOs cover

significant portions of the country, speaking to the large scale of the DTOs.

3 Data Sources and Descriptives

I now explain the sources of data used and present basic summary statistics. I show DTOs

select into richer and more developed areas within Mexico. I gather data from a

variety of sources for my analysis. I use the data to construct a municipality-year panel in

Mexico between the years of 2006 and 2018 for 2435 municipalities.13

3.1 Drug Trafficking Organization Presence

The data source on DTO presence comes from Sobrino (2020). The data agrees with reports

from the US Drug Enforcement Agency14, is consistent with similar datasets that manually

collect news reports on DTO presence, and Sobrino (2020) shows reports on DTO presence

are uncorrelated with the assassination of journalists in Mexico. Data on DTO presence

is collected from Google by crawling through news articles for matches of criminal group

13I group together all the municipalities corresponding to Ciudad de México into a single unit. For
municipalities that changed or were created after 2005, I group them according to 2005 boundaries.

14These reports do not systematically cover the sample years in my paper.
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names and municipality mentions across various years. The crawler searches for articles that

explicitly mention both the DTO and the municipality within the same sentence. As a next

step, a convolutional neural network (CNN) was trained on 5000 sentences to further distin-

guish sentences that describe a cartel as being present in the municipality versus sentence

that do not describe presence but instead mention the DTO for an unrelated reason. There-

fore a news article is classified as describing a particular DTO’s presence in a municipality

if it contains a sentence with both the DTO-municipality pair, and the CNN predicts the

sentence is describing the presence of the DTO. The version of the dataset I use is at the

municipality-year level with a dummy variable whenever any news article claims DTO is

present in a municipality-year according to these criteria. The dataset tracks presence for

72 DTOs between 1990 and 2020. I focus on the 8 largest DTOs during 2006 and 2020.

Furthermore for the rest of analysis I use an imputed measure of presence. I fill in the

gaps between two time periods when a DTO is marked as being within a municipality. My

claim is that these gaps likely still had DTO presence, and there was not a news worthy

event to mark the DTOs as present in the data. For each DTO I impute between 200 and

800 observations as being present, which represents 1-2% of the observations in my sample.

The average length of the gap I fill is roughly 2 years. On the whole, the main results are

not sensitive to this imputation. However the imputation allows for a richer characterization

of the effects of DTO count, since the imputed measures naturally has more non-zero DTO

counts. I discuss these results more in detail in Appendix Section B.

3.2 Data for Main Outcomes

3.2.1 Homicides

Information on homicides comes from mortality records provided by Mexico’s census office

INEGI. INEGI’s annual database details all registered deaths in Mexico. It contains basic

information on the victim such as gender, age of the deceased, occupation, municipality of

residence, and municipality of homicide. Using the correct mortality codes, I keep all deaths

that are deemed to be homicides.
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3.2.2 Middle School Drop Out

Data on dropouts come from Mexico’s 911 School Registry information (Estad́ıstica del

Sistema Educativo Mexicano Formato 911 ). These data were provided by Aprender Con

Evidencia, a Mexican educational non-profit. These are administrative forms every primary,

middle school and high school have to complete in Mexico. The 911 registries have detailed

enrollment information and they track enrollment by grade, sex and age. They separate out

newly enrolled students versus repeaters for each grade. The registry has information for

the start and end of each school year.

In this paper I focus on intra-curricular dropout since it is a simple, reliable measure of

dropout. This is dropout that happens between the start of the academic year and the end

of the same school year.15 The school year in Mexico starts in August and finishes in July

of the following year. To calculate intra-curricular dropout rates for grade 9, I first select

schools that reported both at the start and end of the same academic year. I then aggregate

enrollment counts for all schools in each municipality. As a result, if a student changes school

within the same municipality, they are still captured in my data as being in school.

The total number of students that dropout for grade 9 is the difference between enrollment

at the end of the school year relative to the start of the school year. I normalize this difference

by the start of year enrollment, as in the below formula:

Dropout9mt =
Enrolled Start of Year9mt − Enrolled End of Year9mt

Enrolled Start of Year9mt

(1)

I repeat this calculation broken out by gender as well, where I use gender specific enrollment

counts. I also repeat this for other grades. Dropout for time t corresponds to intra-curricular

dropout for the school year beginning at t. For instance, dropout in the 2014-2015 school

year is marked as dropout for the calendar year 2014 as summarized in Figure 3.

Finally, the dropout measure can have some values that are smaller then -1 or larger

than 1, due to some schools not reporting at the beginning or end of the school year within

15Measuring inter -curricular dropout, from one school year to the next, is more complicated since students
can change schools between school years or repeat grades. The repetition of grades complicates the dropout
measure. Additionally, the fact that students can change schools complicates studying dropout for grade
7, since students change from elementary school to middle school and it is difficult to keep the same set of
schools for comparison. The measure I use, intra-curricular, dropout avoids these issues.
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a municipality. I drop municipality-year observations where the dropout measure is smaller

than -1 or larger than 1 for grades 6,7,8,9 and the average dropout for grades 1-5. This

restriction drop 1036 observations out of 31655 total observations. My main ninth grade

results are insensitive to this restriction.

Figure 3: School Calendar

Start of School Year End of School Year

August t July t+ 1

Notes: Figure describes the end and start of school year s relative to calendar year t. The end of the
school year in Mexico happens in July, and begins again in August. 9th grade dropout for calendar year t is
calculcated relative to enrollment at the start of the school year. I then compare how many students were
enrolled at the end of the same school year during the calendar year t+ 1.

3.3 Other data

I gather other data to supplement the analysis.

Agricultural Revenue Data: I gather municipality specific records of agricultural produc-

tion and revenue, in nominal Mexican pesos. These are estimates published by Mexico’s

SIAP office (Servicio de Información Agroalimentaria y Pesquera). SIAP estimates crop

production for a variety of crops for each municipality, and estimates the revenue brought

by these crops. This data is available for the entire sample period, 2006-2018, and I use it

as a control variable in the analysis.

Population Counts : I use Mexico’s census counts for 2005, 2010, 2015 and 2020 to esti-

mate population counts by municipality. The data comes from INEGI. I linearly interpolate

the population counts for the years between the census. I use population counts as a control

variable in the analysis.

Electricity Information: Mexico’s CFE (Comisión Federal de Electricidad) publishes in-

formation on the amount of registered households and total electricity consumption for each

municipality at the yearly level. This data is only available from 2010-2018. I use this data

to check if the instrument is correlated with economic activity.

Police Officer Information: Mexico’s Census office, INEGI, carries out a biannual census

on municipal public services, which has information on the number of police officers employed
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across municipalities. This data is available for 2012, 2014, 2016 and 2018. I use this data

to check if the instrument is correlated with higher levels of policing. Due to the limited

availability, it is not used for the main analysis.

Juvenile Crime Data: For the years 2014-2018, I use data from INEGI on the number of

juvenile crimes committed in each municipality. The data reports the educational attainment

of the offender. I use this data as an outcome to examine if DTO presence leads to more

crime from adolescent dropouts.

ENLACE Test data: in supplemental analysis, I use individual test score data for the

ENLACE test between 2008 and 2013. ENLACE was a universal, obligatory test adminis-

tered to Mexican students during this time period. I use this data to validate my results

on dropout since the data effectively tracks students’ enrollment over time. The data was

provided by Aprender con Evidencia.

3.4 Descriptive Statistics

Table 1 presents descriptive statistics for my sample, which documents that DTOs select into

richer and more populous areas. This can be seen in the top panel, which splits municipalities

according to the maximum number of DTOs every observed between 2006 and 2018. We

observe a clear pattern: areas with more population, higher literacy rates and less poverty

attract more DTOs. Places that receive many DTOs are also more violent: municipalities

that at some point had 3 or more DTOs have a homicide rate of 22.97, while municipalities

that never had a DTO have a homicide rate of 11.64. There is a similar pattern with 9th

grade dropout: places with more DTOs have a slightly higher dropout rate of 0.06 relative

to 0.04 for places with no DTOs. Disentangling the causal effect of DTO concentration

is complicated by this selection problem. The difference in homicides and dropout may

be driven by the substantive economic differences between places with no DTOs relative

to places with more DTOs. Furthermore, traditional panel data methods may fail in this

setting if DTOs select entry based on a time-varying unobservable. I show later this is indeed

the case, as the time-varying measure of distance used as an instrument predicts DTO entry.

The bottom panel of Table 1 shows summary statistics of the rapid expansion of DTO

presence between 2006 and 2018. We observe important changes in the average number of
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Table 1: Descriptive Statistics

Panel A: Means By Number of Groups
0 1 2 3+ Overall

Covariates
Population (2005) 11,366 23,611 38,742 109,233 44,725
Poverty Rate (2005) 0.74 0.66 0.62 0.55 0.66
Literacy Rate (2005) 0.80 0.84 0.86 0.88 0.83
Elect. Users 3,396 7,144 12,813 36,331 14,373
kWH (millions) 14.60 39.22 71.54 232.66 86.64
kWH per Capita 3,796 5,748 8,619 10,143 6,418
Ag. Revenue 54.01 127.77 170.79 376.38 169.19
Total Police 27 41 73 168 75
Outcomes
Homicide Rate (per 100,000) 11.80 13.94 17.65 23.01 15.95
9th Grade Enrollment 225.69 460.97 760.59 2,060.12 841.37
9th Grade Dropout Rate 0.03 0.03 0.03 0.03 0.03
9th Grade Dropout Rate (Girls) 0.03 0.03 0.03 0.03 0.03
9th Grade Dropout Rate (Boys) 0.03 0.03 0.03 0.03 0.03

Panel B: Dynamics of Criminal Group Presence
2006-2008 2009-2011 2012-2014 2015-2018 Overall

Treatments
Number of DTOs 0.27 0.70 1.03 1.12 0.81
≥ 1 DTOs 0.14 0.27 0.35 0.39 0.30
≥ 2 DTOs 0.07 0.18 0.25 0.27 0.20
≥ 3 DTOs 0.03 0.11 0.16 0.18 0.12
Instruments
Average Dist.t−1 (km) 127.13 78.17 57.98 50.98 76.44
Dist.−1 BLO (km) 120.38 59.76 52.50 51.20 69.44
Dist.−1 CABT (km) . 128.04 66.62 55.50 68.74
Dist.−1 CDG (km) 82.13 58.56 48.71 47.42 58.30
Dist.−1 CDS (km) 89.61 46.90 40.47 35.07 51.63
Dist.−1 CJ (km) 154.75 103.55 86.37 85.16 105.74
Dist.−1 CJNG (km) . 113.87 73.30 40.04 67.54
Dist.−1 FM (km) 188.79 90.83 61.87 59.71 97.18
Dist.−1 LZ (km) . 41.00 34.03 33.74 34.76

Notes: This table displays averages for different variables. The top panel display averages splitting
observations according to the highest number of DTOs observed between 2006-2018 for each municipality.
The bottom panel splits observations according to different time periods, reflecting the rapid expansion
of DTOs in my study period.
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DTOs during the sample period. Between 2006 and 2008 the average number of DTOs for a

given municipality-year was 0.27. The average increases to 1.12 DTOs for 2015-2018. This

change is driven both by the extensive and intensive margin of DTO group count. Between

2006 and 2008 14% of municipality-years have at least 1 DTO and 3% of observations have

3 or more DTOs. Between 2015 and 2018 these proportions increase to 39% and 18%

respectively.

4 Identification Strategy and Instrument Diagnostics

This section lays out my paper’s identification strategy, which is based on DTOs distance

to their existing operations. I showed in Table 1 there is a selection problems: DTOs select

into richer areas to operate. As a result, I pursue an instrumental variables strategy. I argue

that conditional on fixed effects, DTOs’ one year lagged distances are plausible

instruments to study the effects of DTO presence. After presenting arguments for

my identification strategy, I provide empirical evidence that DTOs’ lagged distances are

uncorrelated with several economic characteristics of Mexican municipalities.

4.1 Identification Strategy

To address the selection problem I leverage the rapid expansion of DTOs across Mexico

between 2006 and 2018. During this time period DTOs demonstrated a preference for past

proximity: they were more likely to expand to areas nearby their existing operations. As

an example, consider the expansion of the Familia Michoacana between 2006 and 2018,

as displayed in Figure 4. Familia Michoacana originate in the state of Michoacán in the

south-west of the country and had a large presence in the southwestern region in 2006.

Furthermore, in 2006 it was present in the Yucatán peninsula in the east of the country as

well. By 2018 we can see it expanded heavily nearby its main center of operations in 2006

and also expanded in Yucatán.

The basic logic of my instrument is that groups’ distance to their existing operations is

an important predictor of the number of active DTOs in a municipality, the dimension of

market structure I study. The distances should affect market structure along two channels.
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Figure 4: Familia Michoacana (FM) Presence 2006 and 2018

Notes: This figure plots the presence of Familia Michoacana for 2006 and 2018.

First, a group’s own proximity will make them more likely to enter. If Sinaloa Cartel is closer,

Sinaloa Cartel is more likely to enter. The second channel is through a competitive effect.

If Sinaloa Cartel’s rival’s are closer, Sinaloa Cartel will be less likely to enter since they

anticipate more competition. My first stage Table 4 corroborates these patterns: Groups

are more likely to enter when they are nearby, and less likely to enter if its rivals are nearby.

Combining these two channels, DTOs’ distances to different municipalities is an important

predictor of the number of active DTOs in a municipality

My identification argument is that DTO’s distances to their existing operations is a

plausible instrument to identify the effects of DTO presence and group count. The argument

is this past proximity should have little to no effect on current outcomes, except for the

changes in DTO entry. Distance instruments have been commonly used in other settings,

for example in studying returns to schooling (Carneiro et al., 2011; Mountjoy, 2022) and

also in the IO literature studying firm entry (Aguirregabiria and Magesan, 2020; Ellickson

et al., 2013). In my setting, I use each group’s one-year lagged distance to their operations

as instruments. Additionally I strengthen my identification argument by controlling for

municipality fixed effects. That is, once we account for permanent differences in the cross-

section, municipalities that are further from DTOs should be similar to places that are nearby

DTOs, both along observable and unobservable margins.

The proposed instrument will only be valid if it is independent of potential outcomes and
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satisfies an exclusion restriction: Distances must affect outcomes only through their effect

on DTO presence. I present arguments for both these assumptions next.

I argue the distance instruments satisfy the independence condition because DTOs are

unable to carry out multi-year and cross-regional plans targeting different areas of the coun-

try. If DTOs are able to successfully manipulate their entire network to systematically

target more profitable regions over time, then the distance instrument would fail. In this

case, places that are close to DTOs are just fulfilling the DTO’s long term plans and are

therefore selected either along observable or unobservable margins. In contrast, if DTOs are

unable to carry out a cross-regional plan, I argue the distances will largely be a function

of the initial DTO placement and unobserved cross-sectional differences in profitability for

DTO entry. Therefore, conditional on municipality fixed effects, the distances are plausible

independent of potential outcomes.

There are two main reasons why DTOs are unable to carry out multi-year cross regional-

plans. First, DTOs are large and decentralized operations. Due to the clandestine nature

of criminal organizations difficulties, information and orders cannot flow freely from the top

to the bottom of the organization (Von Lampe, 2015). As a result, even if the top level of

management would like to execute a cross-regional plan, the execution would be complicated

by the relative lack of oversight on lieutenants. Second, the competition between DTOs would

severely hinder a successful execution of such a multi-year plan. DTOs operate in a chaotic

environment where their competitors actions can be unpredictable, further complicating the

execution of a multi-year and cross-regional plan.16

Regarding the exclusion restriction, the main concern we should have are spillovers, since

the distance instrument may simply be capturing a spillover from municipalities with DTOs

to nearby municipalities with no DTOs. Moreover these spillovers need to be dynamic since

I’m using last year’s distances as instruments for current DTO group count. Therefore, it is

not enough for there to be a spillover at time t. The spillover’s effect also needs to persist

into t+ 1 for the exclusion restriction to be violated.

The decentralized nature of the DTOs limits the scope of such a spillover. A natural

concern is that last year’s distance is correlated with contemporary distance. If DTOs

16The adage “No plan survives contact with the enemy” captures this idea.
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shift resources and labor across their network then clearly the exclusion restriction would

not hold: last year’s distances would mean resources can be allocated to areas with more

intense fighting in the current year, therefore affecting current outcomes directly. However

the decentralized nature of DTOs rules this possibilty out since it makes sharing resources

across the DTO network unlikely. Moreover in the robustness checks of Section 8.5 I control

for current distances as well and my main results are unaffected.

Another spillover to be concerned about is migration; past proximity to DTOs may spur

out migration as inhabitants anticipate DTO entry and a subsequent rise in violence. This

out-migration could then lead to increased school dropout. I claim a migratory response is

unlikely for two reasons. First migration is a costly decision and it is odd to think inhabitants

are so forward looking and sensitive to the possibility of a rise in violence that they abandon

their homes before a rise in violence even occurs. Prior work corroborates this view: Daniele

et al. (2023) find a delayed response of many years in migration due to an opium demand

shock in Mexico for the same period studied here. Second, I extensively investigate if my

main results are driven by migration in Section 8.5.1. I find no evidence that the large effects

on dropout are due to to out migration.

Last, we may be concerned that DTOs displace local criminals into surrounding areas. As

a result, places nearby a DTO will additionally see an increase in crime due to the displaced

criminals. While it is difficult to examine this possibility quantitatively, qualitative work

suggests this is not an important concern. DTOs tend to either co-opt local criminals or

engage in a turf battle with local criminals; these qualitative accounts do not highlight the

displacement of local criminals (Correa-Cabrera, 2021).

More generally, the distance instrument should be more credible than other approaches

commonly used in the literature. For instance, many researchers exploit variation in the

price of natural resources to document that natural resource windfalls increase conflict and

crime (Berman et al., 2017; Dube and Vargas, 2013; Wright, 2015; McGuirk and Burke,

2020). These price shocks are excellent sources of identification to study the effects of

natural resource windfalls on crime. However, in my setting these shocks would likely be

poor instruments for DTO presence. While a natural resource windfall would likely attract

Mexican DTOs, it is difficult to attribute the subsequent change in violence or other outcomes
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solely to increased DTO presence. The windfall itself would likely cause direct increases in

violence. For example, the windfall may allow incumbent DTOs to hire more foot soldiers

without further DTOs entering as well, or affect economic outcomes and therefore school

dropout. In contrast, my strategy based on past proximity can alleviate some of these

concerns.

Figure 5: Calculating Group-Specific Distances to Municipalities

Group j

Group i

A

B C

DE

Notes: The figure illustrates the distance calculation for group j for municipality A at a particular year
t. For each municipality, I consider its largest population center to calculate distances. I first calculate all
pairwise distances from municipality A to all other municipalities where group j is present at t. I then set
the minimum distance, depicted in red, as the distance of municipality A for group j for year t. I repeat the
calculation for all groups, municipalities and years.

Figure 5 displays how I calculate distances. All distances are based on straight-line

distances from the largest population center in each municipality. In this example, I calculate

the distance for municipality A for group j. For each year, I calculate the distance from

A to all other municipalities where group j is present. I then take the shortest distance

(highlighted in red) and call that group j’s distance to municipality A. I repeat this for all

municipalities, years and groups. I then take the one year lag and use these distances as my

instruments.

4.2 Diagnostics

I first assess the credibility of my instrumentation strategy using observable covariates. If

my identification strategy is sound, we expect the one year lagged distances to be uncor-

related with important municipality features. Otherwise, this would be evidence against
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the instrument’s independence of potential outcomes. To test this, I run the following fixed

effect regression

Ymt = αm + τt + βZmt−1 +Wmt + umt (2)

I log all distances for ease of interpretation. Zmt−1 is the average log distance across all DTOs

g for municipality m at time t − 1. The terms
∑G

g=1 βgZgmt−1 are instead the individual

DTO distances. Wmt are controls typically used in IO models of entry. These include lagged

presence indicators for each of the 8 DTOs, the inverse hyperbolic of the total active DTO

count for previous year and the yearly log of population counts as imputed by the census,

which is not lagged. I include these controls to be consistent with the econometric model

developed in Section 6.

Ymt are different measures of municipality characteristics. If my identification strategy is

correct, we expect the DTO distances to be uncorrelated with some of the observable munic-

ipality characteristics I’ve gathered. These are the number of residential electricity users, the

kWH electricity consumption, kWH electricity consumption per capita, agricultural revenue

and the total number of police officers. I apply the inverse hyperbolic transformation to

these variables because of their skewed distributions and because some of them have obser-

vations with zero.17 For simplicity, I focus on the years 2011 until 2018, since most of these

covariates are only available after 2010 and 2011 is the first year where all the groups have

a lagged distance variable.

The results are shown in Table 2. For reference the first panel shows results of equation

2 with no fixed effects, while the second panel shows the same regression with fixed effects.

We clearly see that the fixed effects eliminate most of the correlations in the first panel.

The first panel shows that DTOs networks are on average further away from economically

active areas. For instance, column 1 indicates that a 10% increase in the average distance

corresponds to a 23% increase in the number of electrical users. In contrast, the second

panel has economically small and mostly insignificant coefficients. The only statistically

significant coefficient is for the IHS of agricultural revenue, which is significant at the 1%

level. Nonetheless, its magnitude is relatively small. For instance, a 10% increase in the

17Only agricultural revenue and total police officers have zero-valued covariates. Agricultural revenue has
107 observations with zero and total police officers has 394 observations with zero.
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Table 2: Instrument Balance

(1) (2) (3) (4) (5)

IHS(Elect.
Users)

IHS(kWH)
IHS(kWH
per Capita)

IHS(Ag.
Revenue)

IHS(Total
Police)

No Year, Muni. FEs

Average Distance 2.36∗∗∗ 4.41∗∗∗ 2.23∗∗∗ 4.82∗∗∗ 1.04∗∗∗

(0.01) (0.02) (0.01) (0.02) (0.01)
With Year, Muni. FEs

Average Distance 0.01 -0.01 -0.01 0.21∗∗∗ 0.04
(0.01) (0.02) (0.02) (0.04) (0.05)

Individual Distances With Year, Muni. FEs

All Distances Joint F-Stat 7.31 7.97 6.64 45.38∗∗∗ 8.27
P-Value [0.50] [0.44] [0.58] [0.00] [0.41]

Individual Distances With Controls, Year, Muni. FEs

All Distances Joint F-Stat 8.83 7.41 6.33 42.19∗∗∗ 6.87
P-Value [0.36] [0.49] [0.61] [0.00] [0.55]

Outcome Mean 14.69 88291.11 6.04 199202.65 75.03
N 18779 18779 18779 18779 9424

Notes: Unit of observation is a municipality-year. Column headings indicate the outcome used in the
regression. IHS stands for the inverse hyperbolic sine transformation. Elect. Users refers to the number
of residential users reported by municipality and year. kWH refers to kilowatt-hours consumed in each
municipality. kWH per Capita is kWH consumption divided by the number of residential users. Ag.
Revenue refers to the amount of of agricultural revenue in nominal Mexican pesos. Total Police refers to
the total number of officers dedicated to public security. Column 1 reports average residential users in
thousands, Column 2 reports average kWH consumption in thousands, column 3 reports average kWH
consumption in thousands per capita, column 4 reports average agricultural revenue in thousands of
Mexican pesos, in nominal terms. Column 5 reports the average number of police officers. The row
labeled N displays the number of observations included in each regression.
Sample years are 2011-2018. Columns 1-4 have annual data for this period. Total Police in column
5 is reported biannually for 2012, 2014, 2016 and 2018. The row labeled Outcome mean displays the
untransformed means of the outcomes, in levels.
The panel labeled “No Year Muni. FEs” reports estimates of β from equation 3 without the municipality
and year effects. β is the coefficient on average logged distance for all criminal groups in the preceding
year. The panel labeled “With Year Muni. FEs” reports estimates of β from equation 3. The panel
labeled “Individual Distances With Year Muni. FEs” reports the F-statistic and associated value for the
null hypothesis that βg = 0∀g in equation 3. βg correspond to the coefficients on each group g’s logged
distance for the lagged year. “Individual Distances With Controls, Year Muni. FEs” reports F-statistics
for models that include controls and fixed effects. The controls are dummy variables for the presence of
each of the 8 criminal groups for the preceding year and the inverse hyperbolic sine of the total number
of active DTOs in the preceding year.
Standard errors in parenthesis clustered by municipality. P-values for the F-tests reported in brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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average distance across all DTOs corresponds to a 2.1% increase in agricultural output.

To complement this analysis, I run a similar regression which controls separately for each

groups’ distance:

Ymt = αm + τt + δWmt +
G∑

g=1

βgZgmt−1 + umt (3)

Where Zgmt−1 are the individual DTO distances based on its previous year network. The

third panel estimates equation 3, without controlling for Wmt. Here instead of showing a

single coefficient, I display the F statistic and associated p-value testing that all distance

coefficients are zero. We find the same statistical patterns as the top two panels. The

last panel adds the Wmt controls. The third panel is indistinguishable from the fourth panel,

which is reassuring: My identification argument relies on controlling for the appropriate fixed

effects, not other observable covariates. Indeed, addingWmt does not change the relationship

between my instruments and these covariates. I include the controls to be consistent with

the model developed in Section 6.

Overall the instrument seem to be uncorrelated with several important observables. After

controlling for fixed effects, DTOs do not shift their network to target economically prosper-

ous areas, as evidenced by the electricity covariates, or places with less police enforcement,

as evidenced by column 5. This is reassuring for the proposed empirical strategy. Further-

more, Section 8.5.6 conducts a robustness check to assess the sensitivity to controlling for

agricultural revenue. The main results are robust to controlling for agricultural revenue.

5 Two Stage Least Squares and Its Challenges

In this section I present preliminary two stage least squares (TSLS) analysis. I show there is

no weak instrument problem and present evidence for treatment effect heterogeneity in my

setting. I discuss how treatment effect heterogeneity complicates TSLS analysis for multi-

valued treatments, which is required to flexibility study the non-linear effects of DTO count.

I conclude TSLS is not an appropriate strategy to answer my research question.
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5.1 Two Stage Least Squares Results

The TSLS regressions I run are of the form:

Nmt = α1
m + τ 1t +Wmtδ

1 +
G∑

g=1

β1
gZgmt−1 + β2

gZ
2
gmt−1 + β3

gZ
3
gmt−1 + u1mt (4)

Ymt = α2
m + τ 2t +Wmtδ

2 + γ2Nmt + u2mt (5)

Where Ymt is either the count of homicides or 9th grade dropout rate, Wmt is as in

Equations 2 and 3, with the addition of agricultural revenue. The controls include the

lagged presence indicators for each of the 8 DTOs, the total active DTO count for previous

year, the IHS of agricultural revenue and the yearly log of population counts as imputed by

the census. Nmt is the total number of active DTOs in municipality m at time t. I refer to

this variable as the group count moving forward. Equation 4 is the first stage for equation 5,

where the group count is the endogenous variable. For the instrument, I control for a cubic

polynomial of group distances, to mimick the main model used later in the paper. I find the

cubic provides a better fit for the first stage later on.

Results can be seen in Table 3. I use all the sample years 2006-2018. Some groups are

created after 2006, so I impute distances to be zero for the years where the DTO does not

have a lagged distance variable.18 This simple linear model finds a positive effect of group

count on homicides at the 10% significance level. An additional group results on average in

9.93 extra homicides. This represents a large increase in homicides. The average level of

homicides in my sample is 7.95, so one additional DTO implies a substantial increase in the

number of homicides relative to the overall mean. There is no statistically significant effect

on dropout rates and the estimated coefficient is -0.0085.

In addition to the point estimates, I computed the Olea and Pflueger (2013) statistic

for weak instruments, as suggested in Andrews et al. (2019). We can see there is no weak

instrument problem in my setting, since the effective F-stat is 11.46. Indeed a simpler model

18I view this imputation as an undesirable yet necessary feature of the TSLS analysis. In this and other
settings, groups will naturally come into and out of existence. TSLS requires an awkward imputation to
handle this. In contrast, my main method of Section 6 handles this differently. There, I simply set the
group’s probability of entry to be zero if they are non-existent.
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Table 3: Two Stage Least Squares Results

(1) (2)

Homicides Dropout 9th

# DTOs 9.93∗ -0.0085

(5.99) (0.0065)

Outcome Mean (levels) 8.03 0.03

# Instruments 24 24

N 30619 30619

Effective F-stat 11.46 11.46

Sargan-Hansen Test 44.40 61.02

Sargan-Hansen Test p-val 0.00 0.00

Controls Yes Yes

Notes: Unit of observation is a municipality-year. “# DTOs”
is the number of active DTOs at year t. Column headings
indicate the outcomes. The outcomes for the table are the
number of homicides, “Homicides” and dropout rates for grade
9 as a fraction relative to enrollment at the start of grade 9 of
the same academic year, “Dropout 9th”.
Outcome Mean (levels) reports the average number of homi-
cides in (1), and the average drop out rate in (2). # In-
struments reports the number of instruments used, these are
the group specific lagged distances, in logs, for the 8 criminal
groups tracked. N reports the sample size for each regres-
sion. “Effective F-stat” reports the Montiel Pflueger effective
F-statistic (Olea and Pflueger, 2013). “Sargan-Hansen Test’
and “Sargan-Hansen Test p-val”’ reports the Sargan–Hansen
test statistic the p-value. Controls indicates that the regres-
sions include controls. The controls are the inverse hyperbolic
sine of municipal agricultural revenue, dummy variables for
the presence of each of the 8 criminal groups for the preceding
year and the total number of active DTOs in the preceding
year. All models include year and municipality fixed effects.
Standard errors in parenthesis clustered by municipality. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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with simple linear distances, and no cubic controls, yields an even larger F-stat of 29.88.

However I include the cubic controls to harmonize the TSLS results with the main model

results later on.

Furthermore, I compute the Sargan-Hansen J-statistic, which uses the over-identified

model to test the validity of the TSLS estimates with constant effects. For both the homicide

and dropout outcomes I confidently reject the constant treatment effects model. This is

suggestive of heterogeneous effects for the γ2 coefficient in Equation 5, as argued in Rose

and Shem-Tov (2021). Heterogeneity is especially likely given the nature of the instrument.

For example, if the Sinaloa Cartel is nearby they are more likely to enter. The Sinaloa

Cartel may have a different effect on homicides than another DTO, e.g. the Gulf Cartel.

This may be due to different man power capacities or different tactical strategies. In other

words, the compliers shifted by particular DTO’s distance have a different response that

compliers shifted by another DTO’s distance. Informally, this is the same intuition analyzed

in more detail in Mogstad et al. (2021). The different instruments will naturally have different

complier groups.

I explore this heterogeneity directly in Appendix Figure A1. This figure redoes the TSLS

estimation in Equations 5 4, but changes the instruments so it only uses one DTO’s distance

at a time. The other DTO distances are included as controls in the first and second stage

regression. The TSLS model is therefore just identified, with only one distance being used

as an instrument. The estimates are naturally noisier since I use less information to predict

DTO group count. Nonetheless we can observe important differences between the point

estimates. For instance the effect on dropout is much larger using only Sinaloa Cartel’s

(CDS) distance instead of Beltran Leyva Organization’s (BLO) distance. These estimates

suggest we should expect effect heterogeneity to matter when using the DTO distances.

The evidence of treatment effect heterogeneity complicates the task of interpreting the

results in Table 3 as a causal estimate. We could appeal to the ordered treatment model

in Angrist and Imbens (1995) in order to interpret the coefficient on group count. However

this would require a particularly strong monotonicity assumption which is unrealistic in this

setting.19 Moreover, even with the strong monotonicity assumption, the results in Angrist

19In particular, we would need to assume a DTO j’s distance has a monotonic effect on group count Nmt.
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and Imbens (1995) would imply that the coefficient in Table 3 is weighted average across

different “doses” of DTO group count (Nmt) and different complier groups. The TSLS

estimate may for instance be placing more weight on the transition between 1 DTO versus

0 DTOs relative to the transition between 3 DTOs versus 2. It is difficult to know which

transition is driving the results in Table 3. Furthermore, the complier groups for the different

doses are not the same; complier observations for one dose of Nmt can be different than

complier observations for another dose level of Nmt. Therefore in contrast to classical LATE

interpretations, the coefficients in Table 3 doesn’t hold the complier group constant across

different doses of Nmt. As a result, the coefficient in Table 3 would be difficult to interpret

under the ordered treatment model in Angrist and Imbens (1995).

Additionally, we expect there to be important non-linearities in the treatment effects.

These non-linearities are of interest in themselves. The treatment effect of going from a

single, monopolist DTO to no DTOs should be much different than going from a DTO

duopoly to a DTO monopoly. These non-linearities are important for policy makers and can

help guide the deployment of scarce policing resources. For instance, if the largest increase in

violence occurs from 1 DTO to 2 DTOs, that can help target areas with a duopoly. Averaging

over these non-linearities like in Table 3 is inadequate. Ideally we would like to estimate

them directly.

However a growing literature has documented that TSLS is ill-suited to estimate effects

in scenarios with multiple treatment states and heterogeneous treatment effects (Heckman

and Urzúa, 2010; Bhuller and Sigstad, 2022; Mountjoy, 2022; Kirkeboen et al., 2016). That

is exactly the situation we are confronted in this paper. A strategy where I “dummy out” the

endogenous variable Nmt would lead to uninterpretable estimates, even if the TSLS is just or

over-identified. The intuition is that the TSLS coefficient will make the wrong counterfactual

comparison. With a binary treatment, a shift in the instrument can only place an observation

into one counterfactual treatment status. In contrast, with multiple treatment doses, a shift

in the instruments can place a unit into several possible counterfactual doses, and as a result

TSLS coefficients provide uninterpretable estimates of effects. For example, the

This would imply that e.g. a closer distance for j would never decrease Nmt. This precludes strategic effects
where j’s closer distance never intimidates competitor’s from entering, thereby reducing Nmt
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coefficient on the dummy for Nmt = 1 would not capture the treatment effect of a single

DTO to no DTOs. Instead the coefficient will be a mixture other treatment effects as well,

including the effect of 2 DTOs relative to 1, or 3 DTOs relative to 1. TSLS is not a good

estimation strategy to estimate treatment effects in this setting.

In order to estimate treatment effects, I develop a selection model similar to (Kline and

Walters, 2016; Walters, 2018; Rose and Shem-Tov, 2021). This model will allow me to

estimate interpretable treatment effects. Moreover the selection model is consistent with the

industrial organization literature studying firm entry and market structure. I develop this

model in the next section.

6 Econometric Model

Having shown evidence for the instrument’s validity, and discussed the shortcomings of TSLS

in my setting, this section lays out the econometric framework I use to estimate treatment

effects. Estimation is a simple two step procedure. In the first step I estimate the DTOs’

probability of entry, in a model consistent with IO models of firm entry. These probabilities

of entry are consistent with the entry models used in the IO literature. In the second

step, I run a regression of my outcomes on the probability of treatment status and a control

function term, like in Heckman (1979). The instruments facilitate the construction of the

control function.

6.1 Model Setup

We observe 1...M municipalities over 1...T time periods. There are 1...G DTOs that can

enter or exit each municipality in each time period. The group count is the sum of active

DTOs operating in a single municipality. I am interested in estimating different treatment

effects for each possible group count, which ranges from 0...G.20 For an outcome Ymt, I

denote the vector of potential outcomes as

{Ymt(0), Ymt(1), ..., Ymt(G)} (6)

20For instance, with two groups, the possible group counts are {0, 1, 2}
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These potential outcomes span all possible group counts 0...G. The goal is to estimate

different treatment effects of these potential outcomes. Denote the potential outcome for

a particular group count n as Y (n). In this paper, I focus on the the Average Treatment

Effects (ATEs) of different sizes n relative to no groups operating, n = 0. These ATEs are

given by

E[Ymt(n)− Ymt(0)] for n > 0 (7)

Observed group counts are denoted by Nmt. Observed outcomes are given by

Ymt = Ymt(0) +
G∑

n=1

1[Nmt = n][Ymt(n)− Ymt(0)] (8)

6.2 First-Stage Model

I model the first stage as a private information group entry game. In this game, groups

observe a vector of covariates which are common knowledge, and also privately observe a

group-specific profitability shock which other groups do not observe. However groups know

the distribution of rival groups’ shocks. Using this distribution, groups form expectations

on rivals’ actions based on the common knowledge covariates. This group entry game is

consistent with the structural models of entry widely used in the industrial organization

literature (Collard-Wexler, 2013; Ryan, 2012; Arcidiacono and Miller, 2011; Aguirregabiria

and Mira, 2007a; Aradillas-López, 2020). Importantly, groups are allowed to be forward

looking and make decisions based on dynamic considerations.

The environment of the entry game is as follows. For each of the t periods and m munici-

palities, each group g decides whether to operate or not. Entry is not permanent, and groups

can exit municipalities after entry. Each group g observes a vector of covariates (Z̃mt−1,Wmt)

which is common knowledge to all groups. In my application Z̃mt−1 = {Z̃gmt−1}Gg=1 are the

group-specific distances for the previous year, which is common knowledge to all groups.

I bold Z̃ to emphasize it’s a vector across the G groups. These will be the instruments

I use to identify the causal effects of group count in the second stage. Groups also ob-

serve the other covariates Wmt. These are municipal agricultural output at time t and the

log population at time t collected in the vector Xmt, incumbency indicators for all groups
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Dmt−1 = {Dgmt−1}Gg=1, time dummies (Lt) and municipality dummies (Rm) to control for

time-invariant municipality characteristics. For convenience these covariates are included in

the vector Wmt = (Rm, Lt, Xmt,Dmt−1). Again, I bold Dmt−1 since it is a vector across the

G groups.

Groups also observe a private profit shock ϵgmt. Each ϵgmt is known only to each group

g. While each realization ϵgmt is unknown to the other groups g′ ̸= g, the distribution of

ϵgmt is known to all players. In the context of my paper, the ϵgmt could represent unex-

pected manpower losses in a turf battle, unexpected profits from a kidnapping or differing

managerial ability for the group’s local lieutenants at different times. Once groups observe

Z̃mt−1,Wmt, ϵgmt, they decide on their own entry Dgmt. The sequence of the game is summa-

rized in Figure 6

Figure 6: Timeline of Entry Decisions

Start of time
period t

All groups
observe

Z̃mt−1,Wmt.
ϵgmt privately
observed.

Groups form
expectations

of other
groups’ entry.

Groups enter and
entry realized
with Dmt

End of t

t t+ 1

The private information framework is especially appealing in the context of the crimi-

nal sector. Criminal organizations strive to be clandestine and hide from competitors and

the government. Furthermore, reports on competitor’s actions are likely hindered by the

decentralized nature of criminal organizations. These organizations benefit from a loose

chain of command where underlings cannot freely report to more important actors in the

organization, since keeping them separated mitigates the damage done by an informant to

the government or a rival (Von Lampe, 2015). Taken together, it is realistic to think that

criminal organizations have accurate perceptions of their own profitability, yet are unaware

of their competitor’s conditions.

I place the following standard assumptions on the profitability shocks and entry decisions:

Assumption 1 (First Stage Assumptions).

FS1 ϵgmt | Wmt is i.i.d. across time, groups and municipalities.
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FS2 Groups make entry decisions independently across municipalities.

FS3 ϵgmt ⊥ Z̃mt−1 | Wmt,∀g

Once groups observe the covariates Z̃mt−1,Wmt, they form expectations on competitors’

actions and decide whether to enter. The groups’ expectations are formed over the distribu-

tion of ϵg. I make the following high level assumption:

Assumption 2 (Threshold Crossing Representation).

Each group g’s entry decision, Dgmt can be represented as

Dgmt = 1[vgm(Z̃mt−1,Wmt) > ϵgmt]

Where vgm is a possibly nonlinear function

I make this high level assumption in the main text to stress what my model requires,

a threshold crossing representation in the first stage, alongside Assumption 1. Any entry

game that micro-founds this reduced form entry decision is compatible with my estimation.

But what kind of entry games are consistent with this representation? A dynamic Markov

game with private information shocks is one such representation, and it provides sufficient

conditions for Assumption 2. Additional assumptions are needed for this game, and I clarify

the structure in Appendix Section D. The key assumption of this section is a stationarity

assumption. The covariates (Z̃mt−1,Wmt) evolve according to a stable pattern over time, one

which the DTOs know and can anticipate. While this might seem unrealistic for my time

period, which includes substantial DTO expansion, I check the sensitivity of my results to

this stationarity assumption in Section 8.5.5. I find the results are robust to allowing for

non-stationarity.

Furthermore, notice I allow the decision rule to explicitly vary by municipality m, with

vgm. This is to explicitly allow certain forms of multiple equilibria. Entry games may have

multiple equilibria, where the same set of observables (Z̃mt−1,Wmt) lead to different DTO

entry decisions depending on the equilibrium played. With Assumption 2, I assume there may

be multiple equilibria across municipalities m. However, within the same municipality m, I

exclude different equilibria played over time. That is, DTOs play the same equilibrium across
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time within the same municipality. This seems like a reasonable restriction. Furthermore, it

is compatible with the Markov game outlined in Appendix Section D.

Nonetheless, some games are ruled out by Assumption 2. Complete information games

like in (Bresnahan and Reiss, 1991; Ciliberto and Tamer, 2009) are ruled out. This is because

in complete information games, groups decide on entry not only on their own first stage error

ϵgmt but also on their rivals’ errors ϵ−gmt. As mentioned earlier, given the clandestine nature

of criminal groups, they likely do not have high quality on their rivals’ operations and profits,

so excluding complete information games seems reasonable. Similarly, games where the ϵgmt

shocks are correlated amongst the G groups are excluded, Assumption FS1 needs to be satis-

fied. If these correlations are present, then the ϵgmt will generally enter the vgm and we won’t

have a threshold crossing rule. However, notice that I include municipality dummies in Wmt

and can account for municipality specific unobservable variables in estimation. Controlling

for these municipality specific unobservables effectively allows for a degree of correlation in

the errors, one that I can control for. I explain how I accomplish this in Section 7.1.

6.2.1 Re-expressing Entry Decisions

It is convenient to re-express the entry decision in Assumption 2 as follows:

Dgmt = 1[vgm(Z̃mt−1,Wmt) > ϵgmt]

= 1[Fϵ|W (vgm(Z̃mt−1,Wmt)|Wmt) > Fϵ|W (ϵgmt|Wmt)]

= 1[Qgm(Z̃mt−1,Wmt) > egmt]

(9)

Where Fϵ|W denotes the CDF for ϵ, Qgm(Z̃mt−1,Wmt) := Fϵ|W (vgm(Z̃mt−1,Wmt) and egmt :=

Fϵ|W (ϵgmt|Wmt)]. This transformation is innocuous and it eases the subsequent exposition, as

in (Heckman et al., 2006b). First, notice that Qgm(Z̃mt−1,Wmt) = P [Dgmt = 1 | Zmt−1,Wmt],

hence we can directly interpret Qgm as the probability g enters.21 Furthermore, egmt is uni-

formly distributed on [0,1] conditional on (Zmt−1,Wmt), and egmt still inherits independence

21P [Dgmt = 1 | Zmt−1,Wmt] = P [vgm(Z̃mt−1,Wmt) > ϵgmt | Zmt−1,Wmt] = P [vgm(Z̃mt−1,Wmt) > ϵgmt |
Wmt] = Fϵ|W (vgm(Z̃mt−1,Wmt)|Wmt) = Qgm(Z̃mt−1,Wmt). The first equality imposes Assumption 2. The
second equality employs Assumption FS3. The third equality re-expresses the probability with the CDF of
ϵ|W . The last equality follows by the definition of Q.
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w.r.t. Zmt−1 from Assumption FS3. The benefit of this transformation is we can characterize

entry decisions with the probability Qgm along the [0,1] interval.

6.3 Second-stage

I model the potential outcomes as:

Ymt(n) = αn + ψ(Wmt) + Umt(n) (10)

αn represent mean potential outcomes and ψ(Wmt) are additional controls. With this rep-

resentation, the Average Treatment Effects are given by:

E[Ymt(n)− Ymt(0)] = E[αn − α0]

Hence by estimating αn we can obtain the treatment effects of interest.

Note that equation 10 assumes an exclusion restriction: the Z̃mt−1 variables do not enter

the potential outcomes equation. In other words, lagged group distances do not affect current

outcomes directly. The current outcomes in this paper are homicides and school dropout. I

presented arguments for this exclusion restriction in Section 4.1, page 22. In addition to this

exclusion restriction, I employ a mean independence assumption to allow for identification

of causal effects.

Assumption 3 (Second Stage Assumptions).

SS1 Umt(n) ⊥ Z̃mt−1 | Wmt

SS2 E[Ymt(n)|Wmt, emt] = αn + ψ(Wmt) + E[Umt(n)|emt]

Where emt = {egmt}Gg=1

Assumption SS1 is an exogeneity assumption typical in instrumental variable models. I

assume once we control for Wmt, the distance instrument is independent of the unobserved

component of potential outcomes, U(n). I presented evidence for this exogeneity in Table

2, Section 4.2. Assumption SS2 is the same assumption employed in (Mogstad et al., 2018;
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Brinch et al., 2017). The main substance of this assumption is that E[Umt(n)|emt] does not

depend on any of the covariates Wmt. That is, the shape of this expectation is the same for

all values of covariates Wmt.

It is worth discussing the implications of Assumption SS2 for Dmt−1, which is the vector

of past entry decisions and part ofWmt. Assumption SS2 is not saying Dmt−1 is uncorrelated

with Umt(n). Rather, its saying that once we control for the first stage errors emt, Umt(n)

is mean independent of Dmt−1. As a result, this model assumes past entry affects observed

outcomes at time t only by implicitly changing entry probabilities for time t. The same logic

applies to other covariates in Wmt.

6.4 Two Group Example

To see how these assumptions attain identification, consider a simple example with only two

groups, G = 2. Denote by Qm(Z̃mt−1,Wmt) the vector of entry probabilities for each group,

Qm(Z̃mt,Wmt) = {Q1m(Z̃mt,Wmt), Q2m(Z̃mt,Wmt)}. The mean regression of Ymt on Wmt

and the first stage entry probabilities, Qm(Z̃mt,Wmt) for the subset of observations with one

group operating, Nmt = 1 is given by:

E[Ymt|Qm(Z̃mt,Wmt) = q,Wmt, Nmt = 1] = α1 + ψ(Wmt)

+ E[U(1)|q1 > e1, q2 < e2]P [q1 > e1, q2 < e2|{q1 > e1, q2 < e2} ∪ {q1 < e1, q2 > e2},Wmt]

+ E[U(1)|q1 < e1, q2 > e2]P [q1 < e1, q2 > e2|{q1 > e1, q2 < e2} ∪ {q1 < e1, q2 > e2},Wmt]

(11)

Where q1, q2 are the estimated entry probabilities for group 1 and group 2, respectively,

and e1, e2 are the normalized first stage errors.22 This representation exploits the exclusion

restriction, Assumption 3, and the first stage model of entry.23

The probability terms are estimated using the first stage model. For instance, the term

P [q1 < e1, q2 > e2|{q1 > e1, q2 < e2} ∪ {q1 < e1, q2 > e2}] is just the conditional probability

that group 1 enters but 2 does not, conditional on one of the two groups entering.24 ψ can

22Proofs are found in the appendix
23Recall entry occurs if eg < qg, using the normalization in Equation 9.
24This probability is just q1(1−q2)

q1(1−q2)+(1−q1)q2
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be estimated after imposing an appropriate functional form. As a result, we only need to

control for the unknown variables

E[U(1)|q1 > e1, q2 < e2], E[U(1)|q1 < e1, q2 > e2]

which boils down to a control function approach. I estimate the parameters of the outcome

equation 11 using a two-step control function approach, similar to a classic Heckman model

(Heckman, 1979). I first estimate the entry probabilities for each of the groups and

collectQm(Z̃mt,Wmt). I then run a second step regression using these probability terms

and control for E[U(1)|q1 > e1, q2 < e2], E[U(1)|q1 < e1, q2 > e2].

6.5 Generalization to G Groups

Generalizing to the case with G groups is straightforward. First, I establish some notation

for clarity. Define the set

Eg(dg, qg) :=

[0, qg) if dg = 1

(qg, 1] if dg = 0

(12)

Recall entry occurs if qg > eg and there is no entry if qg < eg. The set Eg(dg, qg) is the

region where group g’s first stage error eg must lie given an entry decision dg, and given g’s

probability of entry qg. The set Eg(dg, qg) is tailored for a specific player. We can expand this

concept and consider the region implied for an entire entry vector d = {dg}Gg=1. Similarly

let q = {qg}Gg=1. The symbols q,d are in bold to emphasize that they are a vector for all G

groups. Define the following set:

Ed(d,q) :=
⋂
g

Eg(dg, qg) (13)

Ed(d,q) defines the region where the vector of errors e = {eg}Gg=1 must lie given entries

and probabilities d,q. This set pertains to a single entry vector d. I study the effects of
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group counts in my paper. Hence define a set for a particular group count n:

En(n,q) :=
⋃

d∈N (n)

Ed(d,q) (14)

Where the set N (n) := {d ∈ D|
∑
dg = n} contains all the entry configurations d that yield

a group count n. En(n,q) is simply the region where all first stage errors e can lie such

that the final group count is n. For example, with two players, En(1,q) = {q1 > e1, q2 <

e2} ∪ {q1 < e1, q2 > e2}. The regions have simple representations due to the threshold

crossing for entry in Assumption 2 and the independence between groups’ first stage errors

by Assumption FS1.

Now again consider the mean regression of Ymt on Wmt and the first stage entry proba-

bilities, Qm(Z̃mt−1,Wmt), limited to observations with Nmt = n:

E[Ymt|Qm(Z̃mt−1,Wmt) = q,Wmt, Nmt = n]

= αn + ψ(Wmt) +
∑

d∈N (n)

E[Umt(n)|e ∈ Ed(d,q)]P [e ∈ Ed(d,q)|e ∈ En(n,q),Wmt]
(15)

Similar to the two player case, the only unknown quantity is E[Umt(n)|e ∈ Ed(d,q)].

This expression is just a more complicated version of traditional selection correction terms,

like in Heckman (1979). This term is more complicated since we condition on a vector e

which is truncated along its many dimensions according to d,q, instead of being truncated

along a single dimension like in the binary treatment case. However, these complications

are not conceptual and only create a few additional computational difficulties. I explain in

detail how I handle the selection correction terms in Section 7.4.

7 Identification and Estimation

After explaining the conceptual framework to estimate treatment effects, in this section I

explain the functional forms I use to identify and estimate the model. I also explain how I

account for multiple equilibria across municipalities, and how I conduct inference.
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7.1 Time Invariant Effects and Multiple Equilibria

Municipalities are different due to time-invariant characteristics, and conditioning on these

differences is central to my identification argument. Typically, most empirical studies model

this unobserved heterogeneity with a simple additive fixed effect for each municipality. For

example, consider the fixed effect model Dgmt = 1[ϕm + δZ̃mt−1 + γWmt > ϵgmt]. The effect

ϕm is an additive fixed effect, which varies by municipality.

Modeling time invariant heterogeneity as an additive fixed effect is broadly inconsistent

with incomplete information entry games, as explained in Aguirregabiria and Mira (2019).

The reason is we must also allow the covariates’ effects to vary by municipality as well.

In other words, a more flexible model like Dgmt = 1[ϕm + δmZ̃mt−1 + γmWmt > ϵgmt] with

municipality-specific coefficients (δm, γm) is more appropriate. There are two reasons be-

hind the municipality-specific coefficients (δm, γm), as explained in Aguirregabiria and Mira

(2019). First, entry games typically do not have a unique equilibrium, and instead can have

multiple possible equilibria across municipalities. With multiple equilibria, DTOs have dif-

ferent parameters for entry across municipalities. As a result, the same value of observable

covariates (Z̃mt−1,Wmt) will have different effects across the equilibria. Under this scenario,

a model with municipality specific coefficients (δm, γm), is therefore more desirable. The

second reason behind municipality specific coefficients is more subtle. Even if groups are

playing the same equilibrium across municipalities, any time-invariant differences in flow

profits across municipalities will require municipality specific coefficients. This point is more

nuanced than the point concerning multiple equilibria. I refer readers to Aguirregabiria and

Mira (2019) which explains it in better detail.25

In summary, to make the estimation robust to multiple equilibria and time-invariant

effects, a more flexible model with municipality specific coefficients, like Dgmt = 1[ϕm +

δmZ̃mt−1 + γmWmt > ϵgmt] is desirable. Of course this model is demanding and is infeasible

in my setting or with datasets with similar time-horizons.

Instead, to control for time-invariant differences in the first stage, I employ the group

25Another reason to avoid including municipality specific intercepts is the the incidental parameters prob-
lem (Neyman and Scott, 1948), which makes estimating additive effects difficult in binary choice models.
Intuitively, the non-linearity of typical binary choice problems means the inconsistency in estimating ϕm

spills over into the structural parameters (δ, γ), even if these are the same across municipalities.
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fixed effect estimation strategy (Bonhomme et al., 2022; Saggio, 2012). The substance of the

procedure involve using k-means clustering (Steinley, 2006) to group similar municipalities

into C groups, with C < M , whereM is the number of municipalities. This strategy reduces

the dimensionality of the M fixed effects into a lower C dimensional grouping, by clustering

together municipalities that are similar according to covariates specified by the researcher. I

denote C(Rm) as a function which maps which of the C groups each municipality m belongs

to. Rm is a vector of dummies indicating the observation’s municipality. As a short-hand, I

refer to the C(Rm) groups as municipality types.

The grouped fixed effect framework is a tractable procedure that solves the complications

of multiple equilbria and time-invariant effects in entry game models. I allow for interactions

between the municipality types, given by C(Rm), and the (Z̃mt−1,Wmt) covariates. This

model is given by Dgmt = 1[ϕc + δcZ̃mt−1 + γcWmt > ϵgmt] where the (ϕc, δc, γc) now vary

by the municipality type C(Rm), instead of municipality. This model is therefore a middle-

ground between models that force (δ, γ) to be constant across municipalities and model that

allows a separate coefficient for each municipality. Allowing for these interactions is a simple

and tractable way to check the sensitivity of the results to multiple equilibria.

In the grouped fixed effect framework, the researcher only needs to specify the number

of clusters C and which covariates to use in the clustering algorithm. Following Bonhomme

et al. (2022) I use the average number of years each municipality is observed with a group

count of n, that is 1
T
1[Nmt = n]. I create this variable for n = 0...8, since the maximum group

count is 8. As a result, the clustering algorithm groups municipalities that had similar histo-

ries of group count. Places with many DTOs will be clustered with other municipalities with

many DTOs as well. Intuitively, these municipalities should be particularly profitable, since

they attract so many entrants, and this informs the time-invariant differences across munic-

ipalities. The same logic applies for municipalities with fewer entrants; those municipalities

should be less profitable to enter.

My baseline model includes 5 clusters and excludes interactions between the covariates

and municipality types. I show in Section 8.5.4 the results are robust to allowing for inter-

actions between municipality types and the covariates. As a result, the results are robust

to allowing for multiple equilibria across municipalities. Nonetheless, researchers in other
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settings can use the previous framework to check the sensitivity of their own results. Also,

in Section 8.5.6 I show the results are robust to increasing the number of clusters from 5.

7.2 First-Stage Estimation

This section describes the functional forms used to estimate each DTO’s probability of entry.

Entry decisions are made at the DTO, municipality and year level. I pool all of the G groups

entry decisions and estimate the following probit for the first stage.

Dgmt = 1[ ξ︸︷︷︸
Constant

+ Xmtβ
1
1︸ ︷︷ ︸

Population, Agri. Controls

+ ϕ1
0g1[G = g]︸ ︷︷ ︸

DTO Fixed Effect

+ Ltϕ
1
1 +

C∑
c=1

1[C(Rm) = c]× ϕ1
2c︸ ︷︷ ︸

Time and Municipality Type Fixed Effects

+ γ11Dgmt−1 + γ12Nmt−1︸ ︷︷ ︸
Incumbency Controls

+

γ13cZ̃gmt−1 + γ14Z̃
2
gmt−1 + γ5Z̃

3
gmt−1 + γ6Z̃−gmt−1 + γ17Z̃

2−gmt−1 + γ18Z̃
3−gmt−1︸ ︷︷ ︸

Cubic Polynomial Instruments

> ϵgmt]

(16)

The unit of observation is a DTO × municipality × year. Xmt is the IHS of agricultural value

and log population at time t. Dgmt−1 is group g’s incumbency status. ϕ1
1Lt are time effects

and
∑C

c=1 1[C(Rm) = c] × ϕ1
2c are municipality type fixed effects given by C(Rm), which

supplant traditional municipality fixed effects. Nmt−1 is the lagged group count. Z̃gmt−1 is

the log of group g’s distance tom for the preceding year; Z̃2
gmt−1, Z̃

3
gmt−1 is its square and cube.

Z̃−gmt−1 is the average of the log distance for all other groups j ̸= g; Z̃2−gmt−1, Z̃3−gmt−1 is

the average of the square and cubed logged distances.

7.3 Second-Stage Estimation

I now explain the functional forms used in the second stage regression. In contrast to

the first stage which is at the DTO-municipality-year level, the second stage is at the

municipality-year level. The first stage models entry decisions for all the DTOs. How-

ever, the DTOs’ collective decisions will jointly determine the municipality-year’s treatment

dose at the municipality-year level, the number of active DTOs. Using the previous first
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stage model I estimate the entry probabilities for all players and collect these in Qmt(Z). I

parametrize the potential outcomes to be of the form:

Ymt(n) = αn︸︷︷︸
Treatment Effect

+ Xmtβ
2
1︸ ︷︷ ︸

Population, Agri. Controls

+ Ltϕ
2
1 +Rmϕ

2
2︸ ︷︷ ︸

Time and Muni. FE

+
G∑

g=1

γ21gDmtg−1 + γ22Nmt−1︸ ︷︷ ︸
Incumbency Controls

+Umt(n)
(17)

This baseline specification allows for a separate average mean effect for each potential

outcome (given by αn) but restricts there to be no heterogeneity in the other covariates.

All the variables present in the first stage are present in the second stage, except for the

instruments. In particular notice that the all G of the incumbency indicators are included

as separate variables in the second stage, since these were included in the first stage. Note

additionally that I do not restrict the municipality fixed effects in the second stage to use

the same clusters from the grouped fixed effects procedure. Here, each municipality gets

its own fixed effect. Equation 17 has M fixed effects captured in Rmϕ
2
2, while Equation 16

only has C fixed effects for the C clusters given by C(Rm). This is because the model is

linear and these additional fixed effects do not cause substantive problems. This approach

follows Cornelissen et al. (2018) in modeling fixed effects for this kind of estimation. Finally,

I check in Section 8.5.6 the robustness of my findings to the specification in Equation 17.

The results are robust to alternative versions of this model.

7.4 Control Function

I next show the functional form for the control function and the final estimating equation.

The control function is given by the E[Umt(n)|e ∈ Ed(d,q)]P [e ∈ Ed(d,q)|e ∈ En(n,q),Wmt]

terms in equation 15. As a benchmark, I assume a normal model as in (Heckman, 1979; Kline

and Walters, 2016; Dahl, 2002). The normal model is familiar to many readers and therefore

provides a useful benchmark.

I assume the vector ({U(n)}Gn=0, {ϵg}Gg=1) follows a normal with parameters N(0,Σ). The

variances of {ϵg} are normalized to 1, and are independent across g according to Assumption
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FS1. Let σng be the covariance between U(n) and ϵg. Using multivariate truncated normal

results from Tallis (1961) and the independence between ϵg, we obtain:

E[Umt(n)− Umt(0)|e ∈ Ed(d,q)]P [e ∈ Ed(d,q)|Wmt] =
G∑

g=1

(σng − σ0g)λ(dg, qg) (18)

where dg, qg are the gth components of an entry vector d ∈ D and the vector of entry

probabilities q, and λ is a known function.26 As we can see the normality assumption yields

a convenient functional form.

To create the final estimating equation I exploit that observed outcomes are given by

Ymt = Ymt(0) +
∑G

n=1{Ymt(n)− Ymt(0)}1[Nmt = n], where Nmt is the observed group count.

Now consider the regression of Ymt on entry probabilities Q(Z̃mt−1,Wmt) and covariates Wmt

This yields the following estimating equation:

E[Ymt|Qm(Z̃mt−1,Wmt) = q,Wmt] = α0︸︷︷︸
Intercept

+ Xmtβ
2
1︸ ︷︷ ︸

Population, Agri. Controls

+ ϕ2
1Lt + ϕ2

2Rm︸ ︷︷ ︸
Muni. Time FEs

+
G∑

g=1

γ21gDmtg−1 + γ22Nmt−1︸ ︷︷ ︸
Incumbency Controls

+
G∑

n=0

{
(αn − α0)P [Nmt = n|Qm(Z̃mt−1,Wmt),Wmt]︸ ︷︷ ︸

Treatment Effect

+
G∑

g=1

(σng − σ0g)
∑

d∈N (n)

λ(dg, qg)︸ ︷︷ ︸
Control Function

}

(19)

Notice that equation 19 is linear in the unknown parameters and can therefore be estimated

with simple OLS. Notice as well the first stage probabilities preform two important roles.

26

λ(dg, qg) =

{
−ϕ(Φ−1(qg))

∏
j ̸=g h(qj , dj) if dg = 1

ϕ(Φ−1(qg))
∏

j ̸=g h(qj , dj) if dg = 0

Where ϕ,Φ−1 are the pdf and the inverse cdf of the standard normal distribution. h() is given by

h(dj , qj) =

{
qj if dj = 1

1− qj if dj = 0

So
∏

j ̸=g h(qj , dj) is the probability that all players ̸= g behave according to the entry vector d.
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First they allow calculation of P [Nmt = n|Qm(Z̃mt−1,Wmt),Wmt], the probability of observ-

ing a particular group count n. Given the individual groups first stage probabilities and the

independent errors between groups, this term is a simple function of the individual group

probabilities.27 Second the probabilities q are used to construct the control function λ(dg, qg).

I explore the sensitivity of my results to the normality assumption in Section 8.5.3. I

broadly find that results are similar to a global polynomial control function approach.

The estimation procedure is summarized as follows. I first apply k-means clustering to

group municipalities. I then first estimate individual group entry probabilities using the

probit in equation 16. I then use these probabilities to construct the appropriate terms in

equation 19 and run OLS.

7.5 Inference and Sample Restrictions

Additionally, as a sample restriction, I drop observations where the unit has a probability

of 1 for one of the possible treatment doses, the group counts. These observations are,

according to my model, not at risk to receiving any of the counterfactual group counts

considered. They therefore are not informative of any counterfactual treatment dose, since

they are guaranteed to be placed in only one treatment dose. As a result they are poor

control units when trying to estimate treatment effects. I drop 1575 observations with this

restriction.28 Table A7 provides descriptives for these observations. These are mainly small

municipalities at the beginning of the sample period, that did not have any DTO and were

far away from any DTO. These observations are not informative of counterfactual outcomes

with a non-zero group count.29

As mentioned previously, some of the DTO groups did not exist for the entirety of my

sample period, 2006-2018. I handle these cases by setting the DTO’s probability of entry

27For instance with two groups, P [Nmt = 1] = q1(1− q2) + (1− q1)q2
28To operationalize this procedure, I compute the estimated probability for each possible group count,

ranging from 0 DTOs to 8 DTOs. I round this probability to two digits, and exclude observations where one
group count probability is equal to 1.

29These types of restrictions are commonplace in applied work. Panel methods effectively drop observations
with no within-group variation. With binary treatments, propensity score matching drops observations with
probability 1 or 0 for treatment. In my setting, after dropping probability 1 observations, I keep observations
that may have probability 0 for some treatment doses but still have non-degenerate probability for at least
one treatment dose. These observations are informative for some but not all of the treatment doses, and it
is therefore useful to keep them in the sample.
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to zero, since the DTO could not have possibly entered. This additionally means that their

contribution to the control function term is also zero.

Last, inference is complicated due to the k-means clustering and the first stage probability

estimation used in the second stage. To facilitate inference I apply a block Bayesian bootstrap

(Rubin, 1981; Hull, 2022) for inference. For each municipality, I simulate 1000 weights from

a Dirichlet distribution with parameter 1. Each simulated weight is applied for all the

time periods corresponding to a single municipality. For one simulation draw, I rerun the

entire estimation using the draw as a weight for each municipality: I estimate the clusters

with k-means, I estimate the first stage probabilities with probit, and then I estimate the

second stage equation with OLS. The Dirichlet weights randomly place more weight on some

municipalities over others across simulation draws. This mimics a classical bootstrap, where

municipalities that are sampled more effectively receive more weight during estimation. The

main benefit of this procedure is no observations are ever dropped, which is important for

the fixed effect OLS in the second step.

8 Results

With the econometric model in hand, I next show first stage and second stage results for

homicides and outcomes. I document that increased in DTOs increases homicides and school

dropout, largely for male and older students. Furthermore, I find supporting evidence for

the hypothesis that DTOs actively hire students dropping out.

8.1 First Stage

Table 4 displays results of Equation 16 in column 1, estimated with probit. The results show

DTOs behave as if they are strategic substitutes, with closer rival DTOs discouraging entry.

Table 4 shows other variations of the main equation as robustness checks. The table displays

estimates of average partial effects (APEs) for the different parameters, so we can interpret

the magnitudes in probability space. The row “Own Distance” displays APEs of the effect

of a DTO’s own distance on the probability it enters. The row “Avg. Rival” distance

instead is the the APE for the average of the rival groups’ distances. These estimates have
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the anticipated signs: the effect of a DTO’s own distance is negative, indicating the further

away the DTO was, the less likely they were to enter. In contrast, the effect of rival’s distance

is positive; the further away the rivals are, the more likely a DTO is to enter. In column 1,

a 1% decrease in a DTO’s own distance leads to a 0.01 percentage point (pp) increase in the

likelihood of entry, while a 1% decrease in the average of rival distances decreases entry by

0.01 pp. This pattern is consistent with DTOs behaving as strategic substitutes.

Lag Presence has a positive effect on DTO presence, as we would expect. Incumbency

strongly predicts future presence; in column 1 a DTO is 60.8 pp more likely to remain

in a municipality if it was there before. Lag DTO count also has a significant coefficient

of -0.005. That is, an additional DTO incumbent reduces the probability of entry by 0.5

percentage points. Column 6 estimates a similar model but dummying out the value of lagged

incumbents. The coefficients indicate there is no substantial non-linearity in the number of

incumbents, and the linear model offers a good approximation. Overall, the effects of the

incumbency variables are again consistent with DTOs behaving as strategic rivals.

Column 2 repeats the Equation 16 but with no indicators for municipality type. Reas-

suringly the distance instruments still have the same direction and significance. However,

the sign for the lag # DTOs is now positive, a counter intuitive result which is inconsistent

with the sign of the distance instruments. This highlights the importance of controlling for

time-invariant differences across municipalities. Columns 3 and 4 repeat the main equation

using square and fourth order polynomials, and the estimates are essentially identical. Col-

umn 5 uses the minimum of rivals’ distance instead of the average. The coefficient for the

minimum is still positive but statistically insignificant and much smaller than the value for

the average. Moreover its Bayesian and Akaike Information Criterion (BIC,AIC) values are

larger than in column 1, suggesting the minimum is a worse fit.

Finally, column 7 repeats the model in column 1, but allows for interactions between the

instrument and incumbency variables, with the municipality types. As explained in Section

7.1, these interactions allow a tractable and simple way to model multiple equilibria. Again

the significance and sign of the distance instruments are unchanged, but the effect of lag

incumbents is now insignificant. The model in column 7 offers a better fit than column 1

according to BIC and AIC. However, the added flexibility results in noisier second stage
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Table 4: First Stage Average Partial Effects

(1) (2) (3) (4) (5) (6) (7)

Own Distance -0.010∗∗∗ -0.010∗∗∗ -0.010∗∗∗ -0.010∗∗∗ -0.009∗∗∗ -0.011∗∗∗ -0.010∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Avg. Rival Distance 0.011∗∗∗ 0.007∗∗∗ 0.010∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Min. Rival Distance 0.002

(0.002)
Lag Presence 0.608∗∗∗ 0.656∗∗∗ 0.613∗∗∗ 0.608∗∗∗ 0.621∗∗∗ 0.605∗∗∗ 0.634∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.141)
Lag # DTOs -0.005∗∗∗ 0.010∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.002

(0.001) (0.000) (0.001) (0.001) (0.001) (0.001)
1 DTO -0.002

(0.002)
2 DTOs -0.005∗

(0.003)
3 DTOs -0.014∗∗∗

(0.003)
4 DTOs -0.013∗∗∗

(0.003)
5 DTOs -0.019∗∗∗

(0.003)
6 DTOs -0.024∗∗∗

(0.003)
7 DTOs -0.027∗∗∗

(0.004)
8 DTOs -0.032∗∗∗

(0.006)
IHS(Ag. Value) 0.000∗∗ 0.001∗∗∗ 0.000∗ 0.001∗∗ 0.001∗∗ 0.000∗∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Log(Population) 0.004∗∗∗ 0.010∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Muni. Type FE ✓ ✓ ✓ ✓ ✓ ✓
Muni. Type Interaction ✓

Max Power 3 3 2 4 3 3 3
BIC 41863 46385 41898 41861 42009 41845 41197
AIC 42213 46694 42227 42231 42359 42267 41877

Log-Likelihood -20897 -23162 -20917 -20894 -20970 -20882 -20533
Model d.f. 33 29 31 35 33 40 65

N 219070 219070 219070 219070 219070 219070 219070

Notes: Average partial effects (APEs) of a probit model. The estimation stacks entry decisions for all 8 DTO groups
across municipality and years. If a DTO hasn’t been formed in a certain year, all the observations for that DTO-year
are dropped. For variables that are interacted with municipality type, the APEs are averaged across the interactions.
All estimates include controls for log population, IHS of agricultural revenue, DTO and year fixed effects. Models
use 5 municipality types. Column 1 estimates the pooled first stage equation 16. Column 2 excludes municipality
type fixed effects. Column 3 uses a quadratic polynomial for the distances, Column 4 uses a fourth order polynomial.
Column 5 uses the minimum rival distance instead of the rival. Column 6 dummies out the lag number of DTOs.
Column 7 includes municipality type interactions between the distances variables, lag presence and lag # DTOs.
“Muni. Type FE” indicates if regression includes municipality type fixed effects. “Muni. type interactions” indicates
if the municipality types are interacted with the distance and incumbency variables. Max power shows the polynomial
used for the distance terms. BIC is the Bayesian Information Criterion, AIC is the Akaike Information Criterion.
Model d.f. is the number of parameters in the model. Unit of observation is a DTO-municipality-year. Sample years
are 2006-2018. Standard errors from 1000 bootstrap replications.∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

49



estimates, as I explore in Section 8.5.4. As a result, I opt for the main model in column 1

and exclude these interactions.

To my knowledge these estimates are the first empirical evidence demonstrating DTOs

within Mexico are strategic rivals. Their rivalry is not obvious a priori. DTOs may instead

have been complementary. For example, existing DTOs may degrade government resources

and public institutions, thereby making criminal activity easier. Under this scenario, DTOs

may actually benefit from rivals’ presence and decide to enter where other DTOs already

operate. My estimates indicate this is not the case, and that instead we should treat these

criminal groups as rivals.

8.2 Homicide Estimates

I first examine homicide outcomes. I show that homicides increase with more DTOs, and

this relationship is convex. This convex relationship is important for policy since it suggests

reducing DTO presence is more effective in places with many DTOs. Furthermore, the

results suggests that even a marginal change of a 1 DTO reduction can yield substantive

reductions in violence. It is unnecessary to eliminate all DTOs in order to reduce violence;

small changes in DTO count can have important effects. These results contrast with many

stylized models of crime, which predict that an additional entrant should have little to no

effect with a high number of criminal groups (Hirshleifer, 1995). These theoretical models

predict a concave relationship, while my empirical results suggest a convex one. As a result,

the theoretical models predict an additional entrant should lead to small changes in violence,

while I find the opposite, and an additional DTO can lead to large changes in violence.

The results of the main model are in Figure 7. As in Section 5 I examine the count

of homicides as the main outcome, and I control for log population, IHS of agricultural

revenue, year and municipality dummies in the specifications. Each point is an estimated

coefficient along with its 90% and 95% confidence interval resulting from the 1000 bootstrap

replications. All the coefficients show the ATE relative to having zero DTOs, that is E[Y (n)−

Y (0)]. Additionally, I overlay a quadratic fit to the estimate ATEs to statistically examine

its non-linearity.

We observe a clear upwards trend in the count of homicides: Homicides tend to increase
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as more DTOs enter. Furthermore the relationship is increasing and convex. For example,

the reduction in homicides from 4 DTOs to 3 is 7.56 additional homicides, while from 7 to 6

DTOs it is 36.76, almost 5 times larger than the decrease from 4 DTOs to 3. The quadratic

fit confirms the non-linear relationship. The quadratic term is positive and statistically

significant at conventional levels, providing statistical evidence for a non-linear relationship.

Appendix Table A8 additionally examines a cubic relationship. A joint test of the non-linear

terms also rejects a null effect. Overall there is strong evidence for an increasing, convex

relationship.

Figure 7: Main Homicide Results
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Notes: This figure plots Average Treatment Effect estimates, E[Y (n) − Y (0)], using the normal model
outlined in sections 6 and 7. The outcomes is the number of homicides. Controls include log population, the
IHS of agricultural revenue, and municipality-year effects. The black line is a quadratic fit of the Average
Treatment Effects. The quadratic fit equation is in the top left corner. 90 and 95 % confidence intervals
shown. Standard errors from 1000 bootstrap replications.

How to interpret these effects? The regressor of interest is the number of DTOs in a

municipality. An increased number of DTOs bundles together several potential mechanisms.

I offer two mechanisms for interpretation. First, we expect more competition between DTOs

in the activities they engage in. This competition may be price competition in local retail

sales, labor competition for workers, or increased competition in extortions and kidnappings.

Second, in addition to competition, we expect there to be an increase in criminal capital.
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DTOs in Mexico have extensive criminal know-how and connections with many illicit mar-

kets. I argue these connections and knowhow are a form of criminal capital which impacts

the level of crime, and is another avenue explaining the expansion in violence and crime

in the homicide estimates. Therefore, the entry of additional DTOs not only represents

increased crime due to competition, but also by an increase in criminal capital.

In fact, the results for a single DTO suggest there must be an additional channel apart

from competition. Having a single DTO versus none adds an additional 4.7 homicides, and

this effect is statistically significant at the 10% level.30 Though only marginally significant

this positive effect indicates there must be a channel apart from competition driving the

results. There clearly is no increase in competition when there is a single DTO, yet I find

an increase in homicides. I interpret an increase in criminal capital as a likely explanation,

but there may be other explanations as well.

The result for a monopolist contrasts previous results in the literature. The case of a

criminal monopoly has been studied previously in Brazil and Mexico (Biderman et al., 2019;

Sobrino, 2020), finding either no effect or even a decrease in violence after the monopolist’s

entry. These findings are rationalized as a monopolist criminal organization imposing its

own version of law and order, something it can’t do when competing with rival criminal

groups. However, my results point that this is not the case, and that even a monopolist

criminal group can increase violence and crime.

Several reasons could explain the discrepancy between my results and (Biderman et al.,

2019; Sobrino, 2020). First, this set of papers use a difference in differences design, which

assumes there are no time-varying unobservables affecting DTO entry and homicides. In

contrast, my instrumental variable approach allows for time-varying unobservables, so long

as the exclusion and independence conditions hold. Second, panel designs typically deliver

Average Treatment Effects on the Treated (ATT), not the ATEs I focus on. If DTOs enter

precisely when they expect there to be fewer homicides after entry, due to time-varying

factors, that could also explain the lower estimated effects for the previous panel studies

relative to my main estimates. I leave this for future work and only offer speculative reasons

30The confidence interval for 1 DTO is difficult to observe in the graph. Estimates are also reported in
column 1 of Table A5.
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on the discrepancy for now.

8.2.1 Comparison to Linear Model

Given the non-linear relationship, to what extent would a linear approximation deviate from

my main estimates? To examine this discrepancy, I estimate a competing model which is

linear in the number of DTOs. Specifically, I model potential outcomes as:

Ymt(n) = α + δ × n+ ψ(Wmt) + Umt(n) (20)

where instead of allowing for a separate intercept for each n, I impose a linear relationship

with common intercept α. I then reestimate the model, but with this linear relationship.

Results can be see in Figure 8. We see the linear relationship consistently over-estimates

the impact of an additional DTO. These differences are large. The effect with 4 DTOs

relative to 0 is 28.8 in my main model. The corresponding linear estimate is 90.24, almost

three times larger. Estimates are also reported in Table A9 for clarity. Additionally, we

observe that the standard errors are also wider in the linear model in comparison to the

main estimates. Overall, I find a linear model is a poor fit for the non-linear relationship

with homicides as an outcome.

The linear model is not always a poor fit. As discussed in the next Section 8.3, the results

for school dropout are linear, and as a result the linear potential outcomes model is a good

fit. The same comparison between the linear model and the main model is seen in Figure

A9. As can be seen, the linear model is an excellent approximation for school dropout, and

has slightly smaller standard errors.

I conclude the linear model is a poor approximation for homicides because the homicide

relationship is highly non-linear. Furthermore, the linear model necessarily masks the rel-

evant non-linearities documented earlier. As a result, the linear model not only provides a

poor approximation, but ignores the disproportionate policy gains to reducing DTO presence

with many existing DTOs.
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Figure 8: Homicides - Comparison to Linear Model
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Notes: This figure plots Average Treatment Effect estimates, E[Y (n) − Y (0)], using the normal model
outlined in sections 6 and 7. I compare the main estimates to a linear model of potential outcomes. Controls
include log population, the IHS of agricultural revenue, and municipality-year effects. 90 and 95 % confidence
intervals shown. Standard errors from 1000 bootstrap replications.

8.3 School Dropout Estimates

I now examine effects on school dropout. The results for homicide indicate an important

expansion in criminal activity. Increased crime can affect schooling by a variety of channels.

I focus on three possible channels in this section. First, crime can affect schooling by being

through a disruption effect. Increased crime can make it more dangerous to travel to school,

disrupting school days with violent events or increasing teacher turnover due to safety issues.

Second, households may decide to migrate as a result of the violence. Another channel is a

labor demand effect. Increased DTO presence may affect dropout by increasing labor demand

for potential criminals, typically young men. In this section, I explore these channels by

examining grade by grade dropout results, decomposed by gender. Overall the effects are

concentrated amongst male students in 9th grade, and I find no effect for females or younger

grades. Put together, the gendered and age-differentiated results suggest neither disruption

of school activities nor migration are a primary mechanism, and that DTOs effect on the

opportunity cost of schooling is the primary channel.
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Ninth grade results for school dropout are in Figure 9. I separate effects for male and

female students in the ninth grade.31 Dropout rates are calculated as the dropout between

the start and end of the school year, divided by enrollment at the beginning of the year.

As we can see, an increase in DTO presence increases school dropout for male students but

does not affect female students. Furthermore this relationship is largely linear, with each

additional DTO causing an increase of 1-2 percentage points in school dropout. Moreover,

while there is overlap in the standard errors for male and female students, the joint test

testing if all the estimates are zero rejects for male students with a p-value of 0.06 and fails

to reject for female students, with a p-value of 0.25. Overall, the estimates suggest important

effects for male students, but do not provide evidence for effects for female students.

Figure 9: 9th Grade Dropout by Gender
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Notes: This figure plots Average Treatment Effect estimates, E[Y (n) − Y (0)], using the normal model
outlined in sections 6 and 7. The outcomes for panel (a) is 9th grade dropout rates for all genders. Panel
(b) displays effects for ninth grade dropout rates for males and females. Dropout rates is calculated based
on the dropout between the start and end of school, as a fraction of start of school enrolment. 90 and 95 %
confidence intervals shown. Standard errors from 1000 bootstrap replications.

To help contextualize the 9th grade results, I examine effects for other grades as well.

I examine effects on grades 1-9, grouping together grades 1-5 for parsimony. Grade 6 is

the final grade of elementary school in Mexico and is an important transition grade. To

31Figure A2 shows results combining gender.
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ease exposition, I show the estimated effects for having “Any” DTO. Specifically, I modify

potential outcomes to be

Ymt(n) =

α0 + ψ(Wmt) + Umt(n) n = 0

α∗ + ψ(Wmt) + Umt(n) n > 0

(21)

Where α∗ is the effect of having any non-zero amount of DTOs, and the controls ψ(Wmt)

are as in the main Equation 17. I do this for parsimony, in order to reduce the number of

parameters displayed in the graph. Nonetheless, Figure A3 shows estimates where I do not

collapse the treatment effects. The joint F-tests of the unrestricted model agree with the

simplified version presented in the main text below.

Results are in the top panel of Figure 10. The x-axis shows the grades. Reassuringly, we

still find a positive effect for males in 9th grade, and a null effect for females in 9th grade

as well, repeating the previous 9th grade results. There is only one statistically significant

effect for males in younger grades, for grades 1-5. I fail to find any significant effects for

grades 6, 7 and 8. Overall, there do not seem to be important responses to DTO presence

in grades below ninth grade.

Panel (b) of the figure plots average dropout rates. As we can see, there is less than 1%

dropout in elementary school, between grades 1-6. Grade 7 has a large increase in dropout,

reaching almost 5% for males and 3% for females. Grade 7 is the first grade of middle school

in Mexico, and explains why there is an increase in dropout, since students adjust to the

new phase of schooling. Nonetheless it is interesting to note that there no effects for DTO

presence in grade 7, precisely when mean dropout is largest.

Overall, the grade-by grade results indicate that disruption and migration are an unlikely

explanations for the 9th grade dropout results. If criminal disruption were a primary driver,

we would expect effects for both genders and across grades. Similarly, if migration were

a concern, we would expect to find effects in younger grades as well. However, there are

only significant effects for 9th grade males and a single positive effect for grade 1-5. In

particular, I fail to find effects for grade 7, when there is the largest amount of dropout

for males on average. Last, while the grade-by-grade patterns suggest migration is not a
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Figure 10: Dropout Effects for Any DTO By Grade

(a) Dropout Effects for Any DTO by Grade
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(b) Average Dropout by Grade
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Notes: Panel (a) plots Average Treatment Effects for having any positive number of DTOs. The outcomes
are dropout for male and female students for each grade grade in the x-axis. Panel (b) plots mean dropout
rates by grade. Unit of observation muncipality-year. Sample years are 2006-2018. 90 and 95 % confidence
intervals shown. Standard errors from 1000 bootstrap replications.
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primary concern, I examine migration directly using individualized data in Section 8.5.1.

Again I find migration does not drive my results.

8.3.1 Heterogeneity by Violence

To further examine migration and disruption as possible channels, I examine heterogeneity

by the previous year’s homicide count. If migration and disruptions are important channels,

then we expect last year’s homicides to inform migratory decisions. I hypothesize more

violent locations should induce outmigration. Similarly, more violent locations should suffer

from more disruptive criminal activity. To examine these effects, I again change potential

outcomes to include an interaction effect with the square root of last years homicides:

Ymt(n) =

α0 + β0
√

Homicidesmt−1ψ(Wmt) + Umt(n) n = 0

α∗ + β∗
√

Homicidesmt−1 + ψ(Wmt) + Umt(n) n > 0

(22)

I employ the square-root due to the long right tail in muncipal homicides within Mexico.

Table A3 also uses the Inverse Hyperbolic Sine and the raw count of homicides. The IHS

results show a similar pattern, and unsurpirsingly the raw homicide counts are significantly

noisier and uninformative. As a result, I focus on the square root coefficients β∗ below.

Surprisingly, I find no effect for violence in grades 6-9, though there is a marginally

significant effect for 6th grade females. Moreover, I find negative effects for grades 1-5.

This indicates that, in places with more violence in the previous year, dropout decreases

for elementary school. This is consistent with families keeping their young children longer

in school during more violent times, a natural response if schools are considered to be safe

spaces. Regardless of this last interpretation, these patterns do not support disruption or

migration as important channels for the 9th grade effects.

8.4 Criminal Labor Demand

The grade by grade and gendered results so far suggest disruption or migration are not

primary drivers of the dropout effects observed for ninth grade males. Another possible

channel is increased labor demand for criminal activities on the part of DTOs. I examine
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Figure 11: Dropout Effects for Any DTO. Heterogeneity by Square Root of Lagged Homicides
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Notes: This figure plots the coefficients for the square root of lagged homicides interacted with the probability
of having any DTO. The outcomes are dropout for males and females. 90 and 95 % confidence intervals
shown. Standard errors from 1000 bootstrap replications.
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this channel directly below. I examine two indicators suggestive of criminal labor demand:

Crimes with adolescent age offenders and homicides with adolescent victims. Both indicators

increase with the number of active DTOs.

For adolescent crimes, the arrest data indicates if the perpetrator was a middle school

dropout. This is a highly relevant measure for my study, since I mainly find effects for

dropout in the ninth grade, the last grade of middle school for Mexico. Criminals that

are middle school dropouts therefore contain the students affected by DTO presence in the

previous results in Figure 9. As a result, the previous results in Figure 9 document that

dropout increases for ninth grade males. In this section I show if crimes with these same

dropouts also increase. Important to note, this data is only available for the years 2014-2018

and hence we expect the results to be slightly noisier.

For adolescent homicides, I examine homicides with a 15-18 year old victim. I focus on

this age group since it is after ninth grade in Mexico. Ninth grade students are typically

14 years old in Mexico. Prior work has shown (Carvalho and Soares, 2016) there is a

career ladder for young criminals, typically beginning with low-stakes responsibilities and

progressing in importance and risk after a few years. As a result, we expect there to be no

detectable effect for 14 year old homicides, but do expect an effect for 15-18 year olds. I

examine homicides with 12-14 year old victims in Appendix Figure A5 and indeed find no

effect.

Results can be seen in the top and bottom panels of Figure 12. Here I replicate the

main model of Equation 10, which estimates a separate effects for each number of DTO

present. The top panel shows results for adolescent crimes with middle school dropout as

perpetrators. The bottom panel shows homicides with 15-18 year old victims.

We find a positive effect of DTOs for both outcomes. In particular, crimes with middle

school dropouts have an increasing pattern, with the largest increase occurring with 8 DTOs.

The figure suggest adolescent crimes increase with DTOs. However, the joint F-test fails to

reject with a p-value of 0.17. This is due to two reasons. First, the limited years with

this outcome’s data, only from 2014-2018. Second, adolescent crimes with middle school

dropouts are relatively rare, with an overall mean of only 0.37 crimes. Appendix Figure A4

instead examines all adolescent crime, and finds a similar pattern. However this outcome is
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Figure 12: Adolescent Crimes and Homicides

(a) Adolescent Crimes (Middle School Dropouts)
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(b) Homicides, Victims Aged 15-18
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Notes: This figure plots Average Treatment Effect estimates, E[Y (n) − Y (0)], using the normal model
outlined in sections 6 and 7. The outcomes for panel (a) are the number of crimes with an adolescent
perpetrator who also dropped out of middle school, for years 2014-2018. Panel (b) displays outcomes for
homicides with a 15-18 year old victim, by gender, and for years 2006-2018. 90 and 95 % confidence intervals
shown. Standard errors from 1000 bootstrap replications.
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almost twice as likely, with a mean of 0.63 adolescent crimes, and as a result the joint null

is confidently rejected at conventional levels.

The bottom panel of Figure 12 examines homicides with 15-18 year olds, by gender.

Though most of the male coefficients are insignificant, they are all positive and the joint-test

rejects the null of no effect with a p-value of 0.02. The joint test for females is marginally

significant with a p-value of 0.09, but all the estimated coefficients are much smaller in

magnitude and close to zero.

Overall, these findings suggest that crimes with middle school dropout adolescents in-

crease with DTOs, in line with the previous middle school dropout effects. Though naturally

a harder channel to test due to data constraints, the criminal labor demand channel seems

to be the primary explanation behind the ninth grade dropout effects documented earlier.

8.5 Additional Results and Robustness Checks

I conduct several robustness checks to validate the main findings. I also compare my esti-

mates to more conventional OLS estimates.

8.5.1 Migratory Response

As I argued before, the gendered effects preclude migration to be the main driver of the

dropout results. It is unlikely households selectively choose to migrate, a costly decision,

based on their children’s gender. Nonetheless, in this section I use individualized test data

to directly test if migration is an important mechanism.

I leverage individualized ENLACE test score data to directly measure out-migration over

time. Using the individualized test data, I am able to link students over time and determine

if they move to another municipality. Results are in Figure A7. This data is available only

for the years 2009-2012, leading to a smaller sample and noisier effects. As a result I limit

the maximum number of DTOs to be 3 instead of 5. We observe precisely estimated zeros

for the effect on outmigration.

The ENLACE test data comes with some caveats. Compliance was not perfect. Although

the test was mandatory for all eligible students, only around 85% of eligible students took
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the ENLACE test each year in my data. The missing 15% is a combination of schools not

administering the test and students not taking the exam on test day. As a result, dropout

using ENLACE data is larger than in the school record data and the outmigration indicators

may underestimate true migration responses for students that moved but did not take the test

the next year. Despite these concerns, the individualized ENLACE data does not indicate

an important migratory response.

8.5.2 Criminally Related Homicides

I use the homicide data to examine if the murders are criminally related. The homicide

data contains demographic information on the victim and the cause of death, though it does

not record if the victim was a criminal or a member of a criminal organization. I leverage

the demographic information to examine if females have a treatment effect, if the homicides

are more likely to involve a firearm, and I examine males aged 15-39 as in Calderón et al.

(2015). Calderón et al. (2015) find that this age-gender group is likely to be part of a criminal

organization.

Results can be seen in Table A4. We can see homicides only increase for men and not

women, homicides involving a gun are also more likely to increase and males aged 15-39 are

also likely to be the victim of homicides. Table A4 is consistent with an increase in criminal

activity and competition as DTOs enter.

8.5.3 Sensitivity to Normality

My main model assumes a joint normal distribution for the errors, which yields a convenient

functional form. As a robustness check to this assumption, I instead employ a global poly-

nomial model as a control function.32 I examine quadratic and cubic versions of the control

functions. These estimates are significantly noisier than the normal model results, likely due

to the increased correlation between the probability of observing a certain group count N in

equation 19 and these polynomial terms. As a result, I collapse together potential outcomes

for n > K where K is a cutoff. I collapse effects for 3,4 and 5 DTOs or more.

32Specifically, I model the unobservable expectation with E[U(n)|e = e] =
∑G

g=1

∑P
p=1 ϕpge

p
g for a maxi-

mum power P .

63



Results can be seen in Figures A13-A15. As we can see the estimates get noisier as we

increase the number of possible treated states. Nonetheless, the joint F-test for the ATEs

agree with the normal model in all versions. Furthermore the effects are qualitatively similar,

especially when I restrict the number of treatment effects to only 3. Overall, I find the normal

model largely agrees with the polynomial results, but it is much more precise.

8.5.4 Sensitivity to Multiple Equilibria

To investigate the sensitivity of my results to multiple equilibria in the entry, I interact the

covariates in the model with the grouped fixed effects. Specifically, I estimate the first stage

as:

Dgmt = 1[ξ +Xmtβ
1
1c + ϕ1

0g1[G = g] + Ltϕ
1
1 +

C∑
c=1

1[C(Rm) = c]× ϕ1
2c

+ γ11cDgmt−1 + γ12cNmt−1+

γ13cZ̃gmt−1 + γ14cZ̃
2
gmt−1 + γ5cZ̃

3
gmt−1 + γ6cZ̃−gmt−1 + γ17cZ̃

2−gmt−1 + γ18cZ̃
3−gmt−1 > ϵgmt]

(23)

Where now all the coefficients on observable variables vary by municipality type c, by in-

cluding interactions with municipality type. As such, this function can vary across mu-

nicipalities m, mimicking the representation of Assumption 2. This procedure therefore

allows for multiple equilibria across municipalities, while restricting equilibria to be unique

within municipalities over time. I modify the second stage equation as well to include these

interactions:

E[Ymt|Qm(Z̃mt−1,Wmt) = q,Wmt] = α0 +Xmtβ
2
1c

+ ϕ2
1Lt + ϕ2

2Rm +
G∑

g=1

γ21gcDmtg−1 + γ22cNmt−1

+
G∑

n=0

{
(αn − α0)P [Nmt = n|Qm(Z̃mt−1,Wmt),Wmt] +

G∑
g=1

(σng − σ0g)
∑

d∈N (n)

λ(dg, qg)
}

(24)
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Where again the coefficients on the controls can vary by municipality type c. Results can

be seen in Figure A11. As we can see the results are largely similar, although including the

interactions does add more noise to the estimates. I also consider a middle ground between

interacting all the covariates and interacting none of the covariates with the municipality

type indicators. In this middle ground I only interact the instruments in the first stage model.

Again the results are similar. I conclude the results are robust to multiple equilibria across

municipalities, and accounting for these differences only adds noise to the main estimates.

8.5.5 Sensitivity to Non-Stationarity

I also assess the sensitivity of my results to a nonstationary environment. As mentioned in

Section 6.2 and Appendix Section D, the dynamic Markov game which can yield the reduced

form entry in Assumption 2 requires a stationary environment. That is, groups have a good

sense of how the covariates (Zmt,Wmt) evolve over time, and can form expectations for the

future. My environment may not be stationary, given the rapid expansion of DTO presence

during my sample years and that some DTOs did not exist at the beginning of my study

period.

I estimate a similar model to the main one, except I allow for the coefficients to vary by

different time periods. I divide my sample years into 3 time periods: 2006-2008,2009 and

2010-2018. I chose these time periods as they correspond to different periods with different

amounts of active DTOs, as can be seen in Table A1. Different numbers of active DTOs

provide a natural division of different possible environments across time.

Results can be seen in Figure A12. The results for homicides are comparable but sys-

tematically lower than the main estimates. Importantly, the joint test for any effect rejects

with a p-value of 0.07. For male dropout in 9th grade, the estimates are slightly larger than

the main estimates, but are similar in magnitude and statistical significance.

8.5.6 Specification Checks

My identification strategy relies on one year lagged distance satisfying an exclusion restric-

tion. A natural concern is that lagged distance is correlated with current distance, which in

turn affects homicides or school dropout. For instance, DTOs may leverage shorter distances
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across municipalities to shift resources where competition is most intense. To evaluate this

concern, I add current distances as a control to the second stage equation 17.33Results can be

seen in Table A5 in column 2. We can observe effects for dropout are nearly identical, while

effects for both homicides and and 9th grade dropout remain virtually identical. This cor-

roborates the exposition in Section 2.2; current DTO distances likely do not affect outcomes

because DTOs operate in a decentralized manner and do not share significant resources from

one area to another.

In column 3 of Table A5 I reestimate the base specification without agricultural output

controls, and in column 4 I keep agricultural controls but drop population controls. Both the

homicide and dropout effects are largely unchanged. Last, column 5 drops includes controls

for the number of small DTOs in a municipality. These are DTOs tracked in my data, but

which are not the 8 large DTOs studied in this paper. These DTOs are regional and have

limited scope. The dropout results remain very similar. The homicide results are also similar

but with overall smaller estimated magnitudes. Importantly, the joint-test rejects the null

of no effects in all specifications.

Table A6 rerun the main specification but with 10, 20 and 50 municipality types respec-

tively. The dropout effects are again unchanged. The results on homicides become slightly

smaller and the effects with less than 5 DTOs become insignficant. However th effects with

5 DTOs or more remains similar. Here as well, the joint test rejects the null of no effects for

all 4 columns.

Overall we can see that the effects are quite robust and insensitive to the different spec-

ifications.

8.5.7 Robustness to Sample Restriction

As explained in Section 7.5, I drop observations that have probability 1 for at least one of

the possible treatment states. I do so because these observations are not at risk for any

treatment status and therefore are not informative. 1575 observations are dropped. These

observations are typically from small municipalities with no DTOs, and are additionally far

33As in Carneiro et al. (2011), I do not include the current distances in the first stage since these would
not be in the information set used by DTOs to decide entry.
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from any DTO, as can bee seen in Appendix Table A7. Furthermore the dropped observations

are concentrated at the beginning of the sample period, before the significant expansion of

DTOs’ in Mexico.

I assess the robustness of my main findings by including the entire sample. Results are

displayed in Appendix Figure A8. As can be seen the estimates are virtually identical with

or without the sample restriction for homicides and dropout. The estimates are slightly

smaller in magnitude for dropout when I include all observations, and the joint test is

insignificant with a p-value of 0.29. However the estimates are indistinguishable from the

main specification, with overlapping confidence intervals.

8.5.8 Comparison to OLS estimates

An OLS difference in differences specification provides a natural comparison to my main

estimates. I show the estimates in Figure 13, also reported in Table A9. This figure reports

my main estimates for homicides and male dropout, compared to a panel OLS model. In the

OLS model, I dummy out the number of DTOs as the main regressors of interest. The panel

OLS models have the same controls as the main estimates and also control for municipality

and year fixed effects. The OLS model is therefore a difference in differences specification.

As can be seen, the OLS estimates for homicides in the top panel are systematically

smaller than the main estimates, though they are more precise. Interestingly, the OLS

estimates also display the same convex shape. However the discrepancies are large and

economically meaningful. For example, the OLS estimates of the effect of 4 DTOs relative

to none are more than 5 times smaller than the main estimates (5.33 versus 28.84). Moreover

the OLS estimates find no effect for a monopolist DTO, while I find a marginally significant

positive effect. On the other hand the effects on dropout are all precisely estimated zeros,

and therefore also underestimate the impacts of DTO entry.

What could explain the discrepancy in the estimates? I speculate it is the nature of

selection. Table 1 establishes DTOs select to operate in relatively wealthier areas of Mexico.

These well-endowed areas are precisely the areas with most resources to counteract the

negative effects of DTOs. Table 1 shows they have more police offers, and their schools

may also receive more investment. The fact that OLS underestimates the effects for both
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Figure 13: Comparison to OLS Estimates

(a) Homicides

1 vs. 0 2 vs. 0 3 vs. 0 4 vs. 0 5 vs. 0 6 vs. 0 7 vs. 0 8 vs. 0
Number of Criminal Groups

0

50

100

150

200

P
oi

nt
 E

st
im

at
es

 a
nd

 9
0,

95
\%

 C
on

fid
en

ce
 In

te
rv

al
s

E[Y(n) Y(0)]
Main - N : 28953
OLS - N : 30619

(b) Male 9th Grade Dropout
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Notes: Sample years are 2006-18. Panel (a) displays effects with homicides as outcomes, Panel (b) for 9th
grade dropout for males. This figure replicates the main estimates and compares them to OLS estimates
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outcomes corroborates this view. However, establishing the exact reason for the discrepancy

between my main estimates and OLS estimates is beyond the scope of this paper.

Table A9 also compares the main estimates to TSLS estimates. Column 4 produces

results from the linear model in Section 5. Column 5 produces results form a “dummied”

out model, where the TSLS endogenous variables is the dummied out DTO count. Column

6 produces results for the same dummied out model, but grouping together the effects for

5-8 DTOs. The linear TSLS model detects a positive effect for homicides, but no effect

for school dropout. The dummied out models are noisy too imprecise to yield meaningful

estimates. Nonetheless, the coefficient for one DTO is statistically significant for male 9th

grade dropout.

9 Conclusion

This paper documents important effects of DTOs on homicides and school dropout during

Mexico’s drug war. More DTOs raises homicides and increased dropout for older students,

with linear effects for for school dropout. The effects are concentrated in older and male

students, which suggests at least some students are being pulled into criminal activity. Cor-

roborating this hypothesis, I showed homicides with 15-18 year old males victims also increase

with more DTOs. Crimes with middle school dropout perpetrators also increase.

In contrast, the increases for homicides have an increasing convex relation in the number

of DTOs. Overall, the patterns I find for homicides are inconsistent with the predictions of

models of crime Hirshleifer (1995), which typically predict an increasing concave function

with a horizontal asymptote. I conjecture this is likely due to the simplifying assumptions

needed for theoretical analysis. For instance, these models typically assume groups have

no capital they bring when entering. It is plausible to think that the DTOs in Mexico

have important criminal know-how which can increase the production of crime, as a type

of criminal capital. In this scenario, when an additional group enters they wouldn’t only

diminish the market power of the existing groups. An additional entrant would also increase

the stock of criminal capital, therefore leading to more violence and crime. Nonetheless, this

is speculation on my part and would require future theoretical research.
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In answering this research question I developed a novel selection framework to estimate

treatment effects for questions regarding market structure. I combined elements from the

empirical industrial organization literature and the treatment effect literature. A natural av-

enue for future research is to adapt this paper’s methodology to estimate dynamic treatment

effects. For instance, treatment effects could vary both by the current number of DTOs and

last year’s number as well. Doing so would allow researchers to answer questions regarding

the history of market structure.
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Pereyra, G. (2012). México: Violencia criminal y” guerra contra el narcotráfico”. Revista
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A Appendix

A.1 Tables

Table A1: DTO Data on Presence by Year

Year BLO CJNG CABT CJ CDS CDG FM LZ Total DTOs

2006 ✓ - - ✓ ✓ ✓ ✓ - 5
2007 ✓ - - ✓ ✓ ✓ ✓ - 5
2008 ✓ - - ✓ ✓ ✓ ✓ - 5
2009 ✓ ✓ - ✓ ✓ ✓ ✓ - 6
2010 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2011 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2012 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2013 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2014 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2015 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2016 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2018 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

DTO Data on Lagged Distance Instrument by Year

Year BLO CABT CDG CDS CJ CJNG FM LZ Total DTOs

2006 ✓ - ✓ ✓ ✓ - ✓ - 5
2007 ✓ - ✓ ✓ ✓ - ✓ - 5
2008 ✓ - ✓ ✓ ✓ - ✓ - 5
2009 ✓ - ✓ ✓ ✓ - ✓ - 5
2010 ✓ - ✓ ✓ ✓ ✓ ✓ - 6
2011 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2012 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2013 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2014 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2015 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2016 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
2018 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

Notes: This table indicates which years has data on presence for the different DTOs, and

which years have the 1 year lagged instrument.
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Table A2: TSLS Sensitivity to Controls

(1) (2) (3) (4) (5) (6)
Homicides Homicides Homicides Dropout 9th Dropout 9th Dropout 9th

Group Count 8.97∗ 7.97∗∗∗ 8.99∗ -0.011∗ -0.0038∗∗ -0.011∗

(4.98) (1.64) (5.00) (0.0065) (0.0018) (0.0065)

Outcome Mean (levels) 8.03 8.03 8.03 0.03 0.03 0.03
# Instruments 8 8 8 8 8 8
N 30619.00 30619.00 30619.00 30619.00 30619.00 30619.00
Effective F-stat 29.45 60.48 29.44 29.45 60.48 29.44
Effective F-stat Cutoff 10% 13.24 14.71 13.25 13.24 14.71 13.25
Sargan-Hansen Test 20.56 18.76 20.57 26.56 28.30 26.43
Sargan-Hansen Test p-val 0.00 0.01 0.00 0.00 0.00 0.00
Controls Yes No Yes Yes No Yes
With Agri. Control Yes No No Yes No No

Notes: Unit of observation is a municipality-year. # Groups is the number of active criminal groups at year t.
Column headings indicate the outcomes. The outcomes for the table are the count of homicides, “Homicides” and
dropout rates for grade 9 as a fraction relative to enrollment at the start of grade 9,“Dropout 9th”.
Outcome Mean (levels) reports the untransformed average number of homicides in (1), and the average drop out
rate in (2). # Instruments reports the number of instruments used, these are the group specific lagged distances,
in logs, for the 8 criminal groups tracked. N reports the sample size for each regression. “Effective F-stat” reports
the Montiel Pflueger effective F-statistic (Olea and Pflueger, 2013). “Effective F-stat Cutoff 10%” reports the
critical value testing that the worst case bias of TSLS exceeds 10% of the worst case bias for OLS, with a 5%
confidence. “Sargan-Hansen Test’ and “Sargan-Hansen Test p-val”’ reports the Sargan–Hansen test statistic the
p-value. Controls indicate which regressions include controls. The controls are log population, dummy variables
for the presence of each of the 8 criminal groups for the preceding year and the IHS of the total number of active
criminal groups in the preceding year. “With Agri. Control” indicates which models include the IHS of municipal
agricultural revenue. All models include year and municipality fixed effects.
Standard errors in parenthesis clustered by municipality. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A3: Dropout Effects for Any DTO. Alternative Homicide Transfor-
mations for Heterogeneity by Lagged Homicides

Grade 1-5 Grade 6 Grade 7 Grade 8 Grade 9

Panel A: Male 9th Grade Dropout Rate

√
Lag Homicides -0.0016∗∗∗ -0.0004 0.0001 -0.0005 -0.0002

(0.0005) (0.0007) (0.0009) (0.0008) (0.0007)

IHS(Lag Homicides) -0.0024∗∗∗ -0.0010 0.0005 -0.0002 -0.0005

(0.0006) (0.0011) (0.0014) (0.0011) (0.0011)

Lag Homicides (1000s) -0.0176 -0.0031 -0.0164 -0.0189 -0.0033

(0.0307) (0.0317) (0.0267) (0.0242) (0.0222)

Panel B: Female 9th Grade Dropout Rate

√
Lag Homicides -0.0017∗∗∗ -0.0011∗ -0.0006 -0.0004 -0.0002

(0.0005) (0.0007) (0.0009) (0.0007) (0.0007)

IHS(Lag Homicides) -0.0024∗∗∗ -0.0014 -0.0003 -0.0007 -0.0002

(0.0006) (0.0010) (0.0014) (0.0010) (0.0011)

Lag Homicides (1000s) -0.0164 -0.0126 -0.0095 -0.0091 -0.0101

(0.0313) (0.0368) (0.0263) (0.0197) (0.0217)

N 24634 24634 24634 24634 24634

Notes: Unit of observation is municipality-year for years 2006-2018. Standard errors
from 1000 bootstrap replications.∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A4: Homicide Type Results

(1) (2) (3) (4) (5)

All Homi. Male Homi. Female Homi. Gun Homi. Potentially DTO Related Homi.

1 vs. 0 4.70∗ 4.40∗ 0.27 4.11∗ 3.07∗

(2.65) (2.40) (0.28) (2.39) (1.73)

2 vs. 0 12.36∗ 11.70∗ 0.61 10.92∗ 8.10∗

(6.62) (6.04) (0.66) (6.08) (4.66)

3 vs. 0 21.28∗∗ 19.64∗∗ 1.56∗ 18.03∗∗ 13.21∗∗

(8.63) (7.93) (0.82) (7.75) (5.89)

4 vs. 0 28.84∗∗∗ 27.02∗∗∗ 1.67 24.27∗∗ 17.90∗∗

(10.73) (9.86) (1.02) (9.49) (7.21)

5 vs. 0 6.65 7.57 -0.80 6.01 9.87

(20.47) (18.50) (2.12) (17.00) (11.34)

6 vs. 0 70.41∗∗∗ 63.78∗∗∗ 6.44∗∗∗ 55.95∗∗∗ 31.15∗∗∗

(20.04) (18.30) (2.02) (17.31) (12.02)

7 vs. 0 107.17∗∗∗ 98.59∗∗∗ 8.62∗∗ 86.99∗∗∗ 58.78∗∗∗

(32.91) (29.50) (3.77) (28.08) (19.50)

8 vs. 0 133.23∗∗∗ 120.17∗∗∗ 12.34∗∗∗ 109.05∗∗∗ 81.14∗∗∗

(38.03) (34.49) (3.74) (32.47) (22.17)

Mean 8.44 7.56 0.86 6.4 4.84

N 28953.0 28953.0 28953.0 28953.0 28953.0

Notes: Unit of observation is municipality-year for years 2006-2018. Average Treatment Effect estimates,
E[Y (n) − Y (0)], using the normal model outlined in sections 6 and 7. The outcomes differ across columns.
Column 1 uses all homicides. Column 2 examines homicides for males, column 3 for females. Column 4
examines homicides with a firearm, Column5 examines homicides for males aged 15-39, an age group very
likely to be a part of criminal activity as in Calderón et al. (2015). Standard errors from 1000 bootstrap
replications.∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A5: Specification Checks

(1) (2) (3) (4) (5)

Panel A: Male 9th Grade Dropout Rate

1 vs. 0 0.01∗∗ 0.01∗∗ 0.01∗∗ 0.01∗∗ 0.01∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
2 vs. 0 0.02∗ 0.01 0.01 0.01 0.01

(0.01) (0.01) (0.01) (0.01) (0.01)
3 vs. 0 0.02∗ 0.02∗ 0.02∗ 0.02 0.02∗

(0.01) (0.01) (0.01) (0.01) (0.01)
4 vs. 0 0.04∗∗ 0.03∗ 0.03∗∗ 0.03∗ 0.03∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
5 vs. 0 0.04∗∗ 0.04∗ 0.04∗ 0.03∗ 0.04∗

(0.02) (0.02) (0.02) (0.02) (0.02)
6 vs. 0 0.05∗∗ 0.05∗∗ 0.05∗∗ 0.04∗ 0.05∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
7 vs. 0 0.06∗∗ 0.06∗∗ 0.06∗∗ 0.05∗∗ 0.05∗

(0.03) (0.03) (0.03) (0.03) (0.03)
8 vs. 0 0.06∗∗ 0.06∗∗ 0.06∗∗ 0.06∗ 0.06∗

(0.03) (0.03) (0.03) (0.03) (0.03)
Panel B: Homicides

1 vs. 0 4.70∗ 4.66∗ 4.90∗ 3.45 2.52
(2.65) (2.74) (2.73) (2.68) (3.17)

2 vs. 0 12.36∗ 12.28∗ 12.66∗ 9.08 6.61
(6.62) (6.90) (6.70) (5.74) (7.41)

3 vs. 0 21.28∗∗ 20.85∗∗ 21.75∗∗ 15.51∗ 11.26
(8.63) (8.83) (8.71) (8.13) (9.67)

4 vs. 0 28.84∗∗∗ 28.88∗∗∗ 29.31∗∗∗ 22.18∗∗ 13.79
(10.73) (10.82) (10.90) (10.59) (12.07)

5 vs. 0 6.65 6.84 5.37 0.08 -5.49
(20.47) (21.05) (20.27) (20.35) (23.44)

6 vs. 0 70.41∗∗∗ 70.46∗∗∗ 69.38∗∗∗ 63.06∗∗∗ 47.85∗

(20.04) (20.15) (20.25) (20.62) (27.41)
7 vs. 0 107.17∗∗∗ 106.39∗∗∗ 108.37∗∗∗ 85.87∗∗∗ 72.92∗∗

(32.91) (32.93) (32.13) (33.08) (35.71)
8 vs. 0 133.23∗∗∗ 133.15∗∗∗ 136.30∗∗∗ 120.69∗∗ 62.47∗

(38.03) (38.06) (35.51) (52.17) (33.16)

# Muni. Types 5.0 5.0 5.0 5.0 5.0
Log Pop. Control ✓ ✓ ✓ - ✓
IHS Ag. Control ✓ ✓ - ✓ ✓
Dist.t Controls - ✓ - - -
Small DTOs - - - - ✓

ATE Joint p-val 0.01 0.01 0.01 0.03 0.03
N 28953.0 28953.0 28959.0 29340.0 28947.0

Notes: Average Treatment Effect estimates, E[Y (n)−Y (0)], using the normal
model outlined in sections 6 and 7. The sample sizes change across columns
because the underlying first stage estimates also change, and observations with
probability 1 are excluded as explained in Section 7.5. Standard errors from
1000 bootstrap replications.∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A6: Sensitivity to GFE Groups

(1) (2) (3) (4)

Panel A: Male 9th Grade Dropout Rate

1 vs. 0 0.012∗∗ 0.012∗∗ 0.013∗∗∗ 0.015∗∗∗

(0.005) (0.005) (0.005) (0.005)
2 vs. 0 0.015∗ 0.010 0.011 0.013

(0.009) (0.009) (0.009) (0.010)
3 vs. 0 0.025∗ 0.018 0.022∗ 0.022∗

(0.013) (0.012) (0.013) (0.013)
4 vs. 0 0.035∗∗ 0.030∗ 0.032∗∗ 0.036∗∗

(0.017) (0.016) (0.017) (0.017)
5 vs. 0 0.041∗∗ 0.032∗ 0.032∗ 0.038∗

(0.020) (0.019) (0.019) (0.021)
6 vs. 0 0.051∗∗ 0.037∗ 0.046∗∗ 0.046∗

(0.023) (0.022) (0.021) (0.024)
7 vs. 0 0.063∗∗ 0.046∗ 0.052∗∗ 0.048∗

(0.027) (0.025) (0.026) (0.028)
8 vs. 0 0.064∗∗ 0.051∗ 0.055∗ 0.054∗

(0.029) (0.027) (0.028) (0.030)
Panel B: Homicides

1 vs. 0 4.70∗ -0.68 -3.00 0.49
(2.65) (2.68) (3.90) (2.99)

2 vs. 0 12.36∗ 2.37 -1.98 3.46
(6.62) (5.67) (7.26) (5.72)

3 vs. 0 21.28∗∗ 9.39 -1.24 6.97
(8.63) (7.66) (10.38) (8.38)

4 vs. 0 28.84∗∗∗ 10.07 4.16 15.23
(10.73) (9.92) (13.60) (10.12)

5 vs. 0 6.65 -16.22 3.73 25.15
(20.47) (20.46) (21.59) (16.86)

6 vs. 0 70.41∗∗∗ 41.58∗∗ 5.25 35.53
(20.04) (17.20) (25.97) (24.92)

7 vs. 0 107.17∗∗∗ 78.89∗∗∗ 73.23∗∗ 80.82∗∗∗

(32.91) (27.73) (29.12) (26.83)
8 vs. 0 133.23∗∗∗ 99.89∗∗∗ 100.87∗∗∗ 90.25∗∗∗

(38.03) (28.63) (31.20) (26.77)

# Muni. Types 5.0 10.0 20.0 50.0
Log Pop. Control ✓ ✓ ✓ ✓
IHS Ag. Control ✓ ✓ ✓ ✓
ATE Joint p-val 0.01 0.0 0.0 0.0

N 28953.0 27639.0 27105.0 23951.0

Notes: Average Treatment Effect estimates, E[Y (n) − Y (0)], us-
ing the normal model outlined in sections 6 and 7. The sample
sizes change across columns because the underlying first stage esti-
mates also change, and observations with probability 1 are excluded
as explained in Section 7.5. Standard errors from 1000 bootstrap
replications.∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A7: Descriptive Statistics by Treatment Risk

At Risk Not At Risk Overall

Covariates
Population (2005) 67,124.80 7,186.08 44,725.82
Poverty Rate (2005) 0.61 0.75 0.66
Literacy Rate (2005) 0.86 0.79 0.83
Elect. Users 14,373.24 - 14,373.24
kWH (millions) 86.64 - 86.64
kWH per Capita 6,418.51 - 6,418.51
Ag. Revenue 177.47 16.56 169.19
Total Police 75.03 - 75.03
Year 2,012.29 2,006.52 2,012

Outcomes
Homicide Rate (per 100,000) 16.27 10.03 15.95
9th Grade Enrollment 875.81 206.11 841.37
9th Grade Dropout Rate 0.03 0.03 0.03
9th Grade Dropout Rate (Girls) 0.03 0.02 0.03
9th Grade Dropout Rate (Boys) 0.03 0.02 0.03

Treatments and Instruments
Number of DTOs 0.85 0.01 0.81
≥ 1 DTOs 0.31 0 0.30
Average Dist.t−1 (km) 71.44 172.04 76.44

# Municipalities 2435 951 3386
N 30080 1575 31655

Notes: Unit of observation is municipality-year. This table displays averages for
different variables. Observations are categorized according to whether they are at
risk for a treatment state or not. An observation is at risk if it has a probability
less than 1 for all 9 possible DTO group counts, including 0. Observations that
have probability 1 for a DTO group count are not at risk, since the treatment
status is degenerate. I calculate the probability of treatment status using to
the probit in equation 16. I round the probability for each treatment status
to two digits to determine which observations have degenerate probability. In
practice the only observations that are not at risk are not at risk to have any
DTO presence.
The row labeled “Year” displays the average year for the municipality-year ob-
servations at risk and not at risk.
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Table A8: Testing for Non-linearities in Homicide Treatment Ef-
fects

(1) (2) (3)

Intercept -13.45 11.89 -9.50
(9.96) (12.12) (22.54)

DTOs Linear 13.16∗∗∗ -8.01 18.90
(3.03) (8.47) (25.52)

DTOs Quadratic 2.83∗∗∗ -5.26
(1.09) (7.33)

DTOs Cubic 0.66
(0.59)

Polynomial Terms Wald Test P-Value . 0.01 0.02
N 8.0 8.0 8.0

Notes: This table shows coefficients for regressions of the estimated Average
Treatment Effects on polynomial terms of the number of DTOs. All the
regressions are variance weighted according to the average treatment effects
standard errors. Sample size is 8 since there are only 8 treatment effects.
“Polynomial Terms Wald Test P-Value” reports the P-value for a Wald test
on all the non-linear terms.
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Table A9: Comparison to Linear Model, OLS and TSLS Results

(1) (2) (3) (4) (5) (6)
Main Linear OLS TSLS - Linear TSLS - Dummied TSLS - Dummied 5 DTOs

Panel A: Male 9th Grade Dropout Rate

1 vs. 0 0.012∗∗ 0.008∗∗ -0.001 -0.010 -0.127∗∗ -0.102∗∗

(0.005) (0.004) (0.001) (0.008) (0.051) (0.042)
2 vs. 0 0.015∗ 0.015∗∗ -0.002 -0.021 0.054 0.072

(0.009) (0.007) (0.002) (0.017) (0.070) (0.057)
3 vs. 0 0.025∗ 0.023∗∗ -0.001 -0.031 -0.014 0.022

(0.013) (0.011) (0.002) (0.025) (0.060) (0.044)
4 vs. 0 0.035∗∗ 0.031∗∗ 0.001 -0.042 -0.232∗ -0.138∗

(0.017) (0.014) (0.002) (0.033) (0.127) (0.082)
5 vs. 0 0.041∗∗ 0.038∗∗ -0.002 -0.052 0.066 -0.017

(0.020) (0.018) (0.003) (0.042) (0.116) (0.087)
6 vs. 0 0.051∗∗ 0.046∗∗ -0.003 -0.063 -0.255

(0.023) (0.021) (0.003) (0.050) (0.246)
7 vs. 0 0.063∗∗ 0.054∗∗ -0.004 -0.073 -0.216

(0.027) (0.025) (0.004) (0.058) (0.297)
8 vs. 0 0.064∗∗ 0.062∗∗ -0.003 -0.084 -0.273

(0.029) (0.028) (0.004) (0.066) (0.240)
Panel B: Homicides

1 vs. 0 4.70∗ 22.56∗∗∗ 0.50 9.93∗ -40.02 -30.40
(2.65) (7.13) (1.07) (5.99) (37.49) (22.89)

2 vs. 0 12.36∗ 45.12∗∗∗ 3.28 19.87∗ 21.86 24.08
(6.62) (14.26) (2.84) (11.99) (40.43) (31.72)

3 vs. 0 21.28∗∗ 67.68∗∗∗ 2.07 29.80∗ 61.62 46.81
(8.63) (21.39) (1.90) (17.98) (49.48) (31.92)

4 vs. 0 28.84∗∗∗ 90.24∗∗∗ 5.33∗∗ 39.74∗ 128.80 103.51
(10.73) (28.52) (2.41) (23.97) (100.13) (62.97)

5 vs. 0 6.65 112.80∗∗∗ 5.54 49.67∗ 41.03 -3.61
(20.47) (35.65) (3.87) (29.97) (96.83) (53.97)

6 vs. 0 70.41∗∗∗ 135.36∗∗∗ 14.15∗∗∗ 59.60∗ -312.69
(20.04) (42.78) (4.19) (35.96) (376.36)

7 vs. 0 107.17∗∗∗ 157.92∗∗∗ 28.59∗∗∗ 69.54∗ 372.48
(32.91) (49.90) (6.36) (41.96) (346.79)

8 vs. 0 133.23∗∗∗ 180.48∗∗∗ 64.57∗∗∗ 79.47∗ -0.57
(38.03) (57.03) (14.69) (47.95) (175.24)

N 28953 28953 30619 30619 30619 30619

Notes: This table shows estimated Average Treatment Effects. The first column is the main model used in
the paper. Column 2 is a linear model using Equation 20 to model potential outcomes. Column 3 are OLS
estimates. Column 4 are results from a linear TSLS model. Column 5 are results from the same linear TSLS
model, but dummying out the endogenous variable. Column 6 limits the dummies so that 5 DTOs includes 5
DTOs or more, for increased power. Columns 1 and 2 use 1000 bootstrap replications for inference, column 3-6
uses municipality clustered standard errors. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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A.2 Figures
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Figure A1: One at a Time TSLS estimates

(a) Homicides
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(b) 9th Grade Dropout

BLO CJNG CABT CJ CDS CDG FM LZ
Excluded DTO

0.15

0.10

0.05

0.00

0.05

0.10

Po
in

t E
st

im
at

es
 a

nd
 9

0\
%

 C
on

fid
en

ce
 In

te
rv

al
s

Notes: The figure captures effects along different complier margins, captured for each DTO group instrument.
The unit of observation is municiaplity-year, sample years 2006-18. These figures display TSLS estimates
using one DTO’s distance as the instrument, with all the other distances included as controls. The distances
are the one-year lagged distances, after applying the log transformation. The endogenous variable is the
total number of active groups in municipality m at time t, Nmt. The group used as an instrument is labelled
in the X axis. Cártel Juárez is excluded due to low variation; it is the DTO with the least expansion. I only
exclude this group for this analysis, but include it in all other analysis. 90% confidence intervals shown, with
standard errors clustered by municipality.
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Figure A2: 9th Grade Dropout Rates All Genders
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Notes: This figure plots Average Treatment Effect estimates, E[Y (n) − Y (0)], using the normal model
outlined in sections 6 and 7. Effects for 9th grade dropout rates, including both male and female students.
90 and 95 % confidence intervals shown. Standard errors from 1000 bootstrap replications.
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Figure A3: Dropout by Grade and Gender

(a) Dropout for Female Students
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(b) Dropout for Male Students
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Notes: Standard errors from 1000 bootstrap replications.
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Figure A4: Homicides, Victims Aged 12-14
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Notes: This figure plots Average Treatment Effect estimates, E[Y (n) − Y (0)], using the normal model
outlined in sections 6 and 7. Outcome is all crimes with adolescent perpetrators. Sample years 2014-2018.
90 and 95 % confidence intervals shown. Standard errors from 1000 bootstrap replications.

Figure A5: Homicides, Victims Aged 12-14
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Notes: This figure plots Average Treatment Effect estimates, E[Y (n) − Y (0)], using the normal model
outlined in sections 6 and 7. Effects for homicides with 12-14 year old victims. 90 and 95 % confidence
intervals shown. Standard errors from 1000 bootstrap replications.
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Figure A6: Homicide Results

(a) Alternative Transformations for Homicides
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(b) Homicide Rates

1 vs. 0 2 vs. 0 3 vs. 0 4 vs. 0 5 vs. 0 6 vs. 0 7 vs. 0 8 vs. 0
Number of DTOs

0

20

40

60

80

P
oi

nt
 E

st
im

at
es

 a
nd

 9
0,

95
\%

 C
on

fid
en

ce
 In

te
rv

al
s

E[Y(n) Y(0)]
N: 29665
Homicide Rate
Mean: 16.11
ATE Joint P-val: 0.21

Notes: These figures display effects using alternative transformations for the homicide outcome. Panel A
displays results using the inverse hyperbolic sine “IHS(Homi)”, the square root transformation

√
Homi and

the quartic root transformation 4
√
Homi . Panel B display results using homcide rates per 100,000 population.

Standard errors from 1000 bootstrap replications.
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Figure A7: ENLACE Out Migration Results
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Notes: This figure displays estimates using outmigration as measured by ENLACE test data. Sample years
are 2009-12. I limit the maximum number of DTOs to 3 to gain precision. Standard errors from 1000
bootstrap replications.
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Figure A8: Comparison of Main Sample Results to Full Sample Results

(a) Homicides
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(b) 9th Grade Dropout Both Sexes
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Notes: Unit of observation is municipality-year. Sample years are 2006-18. Panel (a) displays effects with
homicides as outcomes, Panel (b) for 9th grade dropout for both males and females. This figure replicates
the main estimates and compares them to estimates that include all observations. The main sample drop
observations with probability 1 of having no DTO. “All Obs.” instead keeps all observations. Standard
errors from 1000 bootstrap replications.
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Figure A9: Comparison to Linear Potential Outcome Model

(a) Homicides
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(b) Male 9th Grade Dropout
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Notes: Sample years are 2006-18. Panel (a) displays effects with homicides as outcomes, Panel (b) for 9th
grade dropout for males. This figure replicates the main estimates and compares them to similar estimates
from a linear model. The linear model replicates the main estimation procudure, but models potential
outcomes as linear function of the number of DTOs, instead of allowing for a separate intercept for each
number of DTOs. Both models control for log population, IHS of agricultural production, dummy indicators
for lag presence for the 8 DTO groups, and the lag DTO count. Standard errors from 1000 bootstrap
replications.

97



Figure A10: Comparison to Different First Stage Models

(a) Homicides
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(b) Male 9th Grade Dropout
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Notes: Sample years are 2006-18. Standard errors from 1000 bootstrap replications.
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Figure A11: Robustness to Multiple Equilibria in First Stage

(a) Homicides
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(b) Male 9th Grade Dropout
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Notes: Sample years are 2006-18. Standard errors from 1000 bootstrap replications.
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Figure A12: Robustness to Non-stationarity

(a) Homicides
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Figure A13: Comparison to Polynomial Controls, Maximum 3 DTOs
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Figure A14: Comparison to Polynomial Controls, Maximum 4 DTOs

(a) Homicides

1 vs. 0 2 vs. 0 3 vs. 0 4 vs. 0
Number of Criminal Groups

60

40

20

0

20

40

60

P
oi

nt
 E

st
im

at
es

 a
nd

 9
0,

95
\%

 C
on

fid
en

ce
 In

te
rv

al
s

E[Y(n) Y(0)]
Normal Model
ATE Joint P-val = 0.00
Poly. Degree 2
ATE Joint P-val = 0.04
Poly. Degree 3
ATE Joint P-val = 0.09

(b) Male 9th Grade Dropout

1 vs. 0 2 vs. 0 3 vs. 0 4 vs. 0
Number of Criminal Groups

0.050

0.025

0.000

0.025

0.050

0.075

0.100

P
oi

nt
 E

st
im

at
es

 a
nd

 9
0,

95
\%

 C
on

fid
en

ce
 In

te
rv

al
s

E[Y(n) Y(0)]
Normal Model
ATE Joint P-val = 0.02
Poly. Degree 2
ATE Joint P-val = 0.04
Poly. Degree 3
ATE Joint P-val = 0.19

Notes: Sample years are 2006-18. Standard errors from 1000 bootstrap replications.

102



Figure A15: Comparison to Polynomial Controls, Maximum 5 DTOs
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Figure A16: Standard Errors With Fewer Bootstraps
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Notes: This figure examines how the standard errors evolve with the number of bootstraps. I first compute
standard errors based on 100 bootstraps, focusing on the estimates for the 8 average treatment effects. I
then calculate standard errors using 100 more bootstraps, shown on the x-axis. I compare the standard
errors to the errors using 100 fewer bootstraps, calculate the percentage difference, and take the maximum
discrepency across the 8 coefficients. The figure shows results for homicides and male dropout outcomes.
With 1000 bootstraps, the standard errors vary less than 2% with 100 extra bootstraps.
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B Presence Imputation

For the analysis in this paper I use an imputed version of DTO presence as recorded in my

data. The imputation fills in “gaps” in the presence variables. For each munipality, I fill

in the years between two years where a DTO is observed. For example, if Sinaloa Cartel is

observed in municipality A in 2010 and is not observed again until 2013, I fill in 2011 and

2012 as having Sinaloa Cartel’s presence.

I do this imputation in order to have a better measure of a DTO’s network over time,

which is crucial for my distance based instrument. A DTO will be marked as absent in my

data if there are no relevant news reports concerning that DTO and municipality for a given

year. The DTO may still be present in the municipality, due to my data’s measurement error.

This is especially likely if the gaps we observe are shorter. Table B1 displays the number of

imputations and the average length of years for each filled in gap. The average gap is only

two years long. Table B2 displays the imputed and non-imputed distrubtion of DTO group

counts. Table B3 displays average distances according to the imputation strategy.

To further examine the effect of this imputation, I run the following fixed effects regres-

sion:

Homicidesmt = αm + τt + δLog Populationmt +
8∑

i=1

βi1[Nmt = i] + umt (25)

I do this for the imputed and non-imputed versions of Nmt. This regression examines if

there any drastic differences between the imputed and non-imputed measures. Results are

in Table B4 Reassuringly, both measures yield largely the same coefficients for homicides. I

take this as evidence that the imputation is largely innocuous.

Finally, I compare my main results with and without this imputation. both the measure-

ment of group counts Nmt and the measurement of the instrument Zgmt−1, since the distance

instrument depends on where the DTOs are located. Because the non-imputed version has

lower DTO group counts and the increased measurement error in the instrument, it is not

possible to estimate effects up until 5 DTOs. I limit this estimation to a maximum of 2

DTOs. Results are in Table B5. As we can see the 9th grade dropout results are similar

but larger in magnitude with no imputation. The homicide results are also larger and also

statistically significant. In summary, the results are qualitatively similar, but the imputation
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allows me to estimate a richer set of effects.

Table B1: Number of Imputations and Average Length

DTO # Imputations Average Imputation Length % Obs. Imputed

BLO 486 2.22 0.02
CJNG 565 1.99 0.02
CABT 309 1.80 0.01
CJ 261 2.34 0.01
CDS 741 2.41 0.02
CDG 585 2.58 0.02
FM 534 2.18 0.02
LZ 696 2.10 0.02
Any Imputation 2657 1.96 0.08

Notes: This tables displays the number of imputations for each DTO in the column # Imputa-
tions. “Average Imputation Length” displays the average number of years for the imputations.

Table B2: Distribution of DTO
Group Count

# DTOs No Imputation Imputed

0 0.783 0.705
1 0.089 0.098
2 0.055 0.073
3 0.030 0.045
4 0.018 0.028
5 0.011 0.018
6 0.006 0.012
7 0.004 0.010
8 0.004 0.010

Notes: This tables displays the distribtuion
of observations by the DTO group count (#
DTOs).
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Table B3: Comparison of Distance Instrument by Im-
putation

DTO Imputed Not Imputed

BLO 69.44 (63.41) 87.03 (73.43)
CABT 68.74 (70.1) 80.68 (80.19)
CDG 58.30 (53.57) 77.58 (66.3)
CDS 51.63 (47.31) 66.52 (53.67)
CJ 105.74 (74.28) 155.90 (121.35)

CJNG 67.54 (71.29) 78.63 (76.0)
FM 97.18 (122.98) 131.86 (154.39)
LZ 34.76 (30.68) 45.31 (39.82)

Average 76.44 (57.37) 98.95 (65.54)

Notes: This table compares the DTO distances by imputation
strategy. “Average” refers to the average distance across all 8
DTOs. Standard errors shown in parenthesis.
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Table B4: Homicide Regressions by Impu-
tation

No Imputation Imputed

1 vs. 0 DTOs 1.43∗ 1.05
(0.78) (0.97)

2 vs. 0 DTOs 4.10∗ 4.59∗

(2.37) (2.70)
3 vs. 0 DTOs 6.63∗∗∗ 4.23∗∗

(1.20) (1.65)
4 vs. 0 DTOs 10.42∗∗∗ 8.43∗∗∗

(1.99) (2.22)
5 vs. 0 DTOs 11.44∗∗ 9.64∗∗

(5.33) (3.78)
6 vs. 0 DTOs 26.82∗∗∗ 19.63∗∗∗

(4.56) (3.60)
7 vs. 0 DTOs 46.25∗∗∗ 35.99∗∗∗

(9.68) (6.07)
8 vs. 0 DTOs 106.94∗∗∗ 73.43∗∗∗

(25.45) (15.24)

N 30959.0 30959.0

Notes: This table compares OLS regressions of
the number of homicides on the number of DTOs,
as measured with and without imputation. The
first column uses DTO counts as measured with
no imputation. The second column includes im-
puted presence for the 8 large DTOs tracked in
this paper. Observations are imputed for each
DTO. For all time periods between two years
where a DTO is observed within the same mu-
nicipality, my imputation fills in those periods as
if the DTO was present in that interval.
Both regressions include municipality and year
fixed effects as in 25. Both regressions control for
log population.
Standard errors in parenthesis clustered by mu-
nicipality. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B5: ATE estimates by Imputation

(1) (2)
Imputed Not Imputed

Panel A: 9th Grade Dropout Rate

1 vs. 0 0.01∗∗ 0.04∗∗∗

(0.00) (0.01)
2 vs. 0 0.01 -0.01

(0.01) (0.04)
3 vs. 0 0.02 0.04

(0.01) (0.03)
≥ 4 vs. 0 0.03∗∗ 0.05∗∗∗

(0.01) (0.02)
Panel B: Homicides

1 vs. 0 3.18 30.79∗∗

(2.05) (13.84)
2 vs. 0 8.37 -31.85

(5.40) (32.92)
3 vs. 0 14.57∗∗ 40.66

(7.04) (42.31)
≥ 4 vs. 0 25.76∗∗∗ 74.11∗∗∗

(8.92) (17.83)

N 27860.0 28635.0
Mean 5.31 6.98

Notes: This table compares ATE estimates of the
main model with imputed DTO presence to estimates
that do not impute DTO presence. The difference in
sample size is due to the different first stage estimates
relative to the main model. This leads different obser-
vations to have a probability 1 for one of the displayed
treatment doses, which leads them to be excluded by
the criterion in Section 7.5.
Standard errors in parenthesis clustered by munici-
pality. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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C Proofs for Econometric Section

This section derives Equation 15 and the estimation equation 19.

E[Ymt|Qm(Z̃mt−1,Wmt) = q,Wmt, Nmt(q) = n]

= E[Ymt(n)|Qm(Z̃mt−1,Wmt) = q,Wmt, Nmt(q) = n]

= αn + ψ(Wmt) + E[Umt(n)|Qm(Z̃mt−1,Wmt) = q,Wmt, Nmt(q) = n]

= αn + ψ(Wmt) + E[Umt(n)|Wmt, Nmt(q) = n] (Assumptions SS1 FS3)

= αn + ψ(Wmt) + E[Umt(n)|Nmt(q) = n] (Assumption SS2)

= αn + ψ(Wmt) +
∑

d∈N (n)

E[Umt(n)|Dmt(q) = d,Nmt(q) = n]P [Dmt(q) = d|Nmt(q) = n]

= αn + ψ(Wmt) +
∑

d∈N (n)

E[Umt(n)|Dmt(q) = d]P [Dmt(q) = d|Nmt(q) = n]

To get the final estimating equation, start with observed outcomes and keep the αn, ψ nota-

tion
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E[Ymt|Qm(Z̃mt−1,Wmt) = q,Wmt]

= Ymt(0) +
G∑

n=1

E[Ymt(n)− Ymt(0)|Qm(Z̃mt−1,Wmt) = q,Wmt]

= α0 + ψ(Wmt) + E[Umt(0)|Qm(Z̃mt−1,Wmt) = q,Wmt]

+
G∑

n=1

P [Nmt(q) = n|Qm(Z̃mt−1,Wmt) = q,Wmt]{αn − α0}

+ P [Nmt(q) = n|Qm(Z̃mt−1,Wmt) = q,Wmt]E[Umt(n)− Umt(0)|Qm(Z̃mt−1,Wmt) = q,Wmt, Nmt(q) = n]

(Iterate Expectations)

= α0 + ψ(Wmt) +
G∑

n=1

P [Nmt(q) = n|Wmt]{αn − α0}

+ P [Nmt(q) = n|Wmt]E[Umt(n)− Umt(0)|Qm(Z̃mt−1,Wmt) = q,Wmt, Nmt(q) = n]

(Assumptions SS1 FS3 and E[Umt(0)] = 0)

= α0 + ψ(Wmt) +
G∑

n=1

P [Nmt(q) = n]{αn − α0}

+ P [Nmt(q) = n|Wmt]
∑

d∈N (n)

E[Umt(n)|Dmt(q) = d]P [Dmt(q) = d|Nmt(q) = n,Wmt]

= α0 + ψ(Wmt) +
G∑

n=1

P [Nmt(q) = n|Wmt]{αn − α0}

+ P [Nmt(q) = n|Wmt]
∑

d∈N (n)

E[Umt(n)|Dmt(q) = d]
P [Dmt(q) = d ∩Nmt(q) = n|Wmt]

P [Nmt(q) = n|Wmt]

= α0 + ψ(Wmt) +
G∑

n=1

P [Nmt(q) = n|Wmt]{αn − α0}

+ P [Nmt(q) = n|Wmt]
∑

d∈N (n)

E[Umt(n)|Dmt(q) = d]
P [Dmt(q) = d|Wmt]

P [Nmt(q) = n|Wmt]

(Dmt(q) = d necessarily yields n)

= α0 + ψ(Wmt) +
G∑

n=1

P [Nmt(q) = n|Wmt]{αn − α0}

+
∑

d∈N (n)

E[Umt(n)|Dmt(q) = d]P [Dmt(q) = d|Wmt]
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After plugging in the functional forms for ψ, and imposing normality for the control

function term (Tallis, 1961), we obtain the final estimating equation:

E[Ymt|Q(Z) = q,W ] = α0 + β2
1Xmt +

G∑
g=1

β2
2gDmtg−1

+ ϕ2
1Lt + ϕ2

2Rm +
C∑
c=1

γ21c1[C(Rm) = c]× IHS(Nmt−1)

+
G∑

n=0

(αn − α0)P [N(q) = n|Wmt] +
G∑

g=1

(σng − σ0g)
∑

d∈N (n)

λ(dg, qg)


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D Dynamic Entry Game Assumptions

The key assumption for the control function approach used in this paper is Assumption 2,

which states DTOs entry decisions admit a threshold crossing representation. In this section,

I describe sufficient conditions that yield this threshold crossing model. In particular, I

describe a Markov game where DTOs are allowed to be forward-looking, yet we still obtain

threshold crossing representation in Assumption 2. In this section, I closely follow the

expositions in (Aguirregabiria and Mira, 2007b; Aguirregabiria et al., 2021).

D.1 Assumptions and Notation

First I define notation. Recall there are 1...T time periods, 1...M municipalities 1...G DTOs.

At every time period t, DTOs decide simultaneously which municipalities to enter. Group

g’s entry decision for m, t is given by Dgmt. Each DTO chooses Dgmt optimally, according

to the criteria I define next.

At the beginning of each period t, firms profits are affected by observable covariates

(Z̃mt−1,Wmt) and a vector of unobservables ϵ̃gmt. In line with Aguirregabiria and Mira

(2007b), ϵ̃gmt contains two components, one with no entry and another with entry, rep-

resented with ϵ̃gmt = (ϵ̃gmt(0), ϵ̃gmt(1)). Recall Z̃mt−1 = {Z̃gmt−1}Gg=1 is the vector of all

DTOs group for the last year. Wmt contains municipal agricultural output at time t and the

log population at time t collected in the vector Xmt, incumbency indicators for all groups,

(Dgmt−1), time dummies (Lt) and municipality dummies (Rm) to control for time-invariant

municipality characteristics. For convenience these covariates are collected in the vector

Wmt = (Rm, Lt, Xmt, {Dgmt−1}gg=1). (Z̃mt−1,Wmt) are common knowledge to all groups at

the beginning of t. Additionally, let ϵ̃mt = {ϵ̃gmt}Gg=1 be the vector of all groups unobservables.

I assume (Z̃mt−1,Wmt, ϵ̃mt) follows a controlled Markov process with transition probability

p(Z̃mt−1,Wmt+1, ϵ̃mt+1|Z̃mt−1,Wmt, ϵ̃mt,Dmt). Dmt is the vector of all groups’ entry decisions,

Dmt = {Dgmt}Gg=1

Let Π̃g(Dmt, Z̃mt−1,Wmt, ϵgmt) be group g’s flow profits. Notice flow profits for group g

can be affected by the entire vector of entry Dmt, allowing that DTO competition can affect

profits. Since DTOs are allowed to be forward looking, their goal is to choose entry decisions
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Dgmt to maximize expected discounted profits:

E

{
∞∑
s=t

βs−t
g Πg(Dms, Z̃ms−1,Wms, ϵ̃gms) | Z̃mt−1,Wmt, ϵ̃gmt

}
(26)

Where βg ∈ (0, 1) is a discount factor. The primitives of the model are the profit functions

{Πg}Gg=1, the transition probability p(·|·) and the discount factor βg. Notice that the DTO

groups do not treat Z̃gmt as a control variable to maximize profits. They take the distances

as given. This is in line with assumption FS3 and with the decentralized nature of DTOs. I

assume DTOs are not solving the full problem of choosing a network and internalizing the

benefits due to Z̃gmt. Instead, they take these distances as given.

I now add the following assumptions on the model primitives:

Assumption 4 (Additively Separable Flow Profit).

Private information appears additively separably in the flow profit function. Additionally,

Z̃mt−1 only affects group g’s profits through Z̃gmt−1 so rival distances are irrelevant for profits.

Furthermore this component is also additively separable. Put together:

Π̃g(Dmt, Z̃mt−1,Wmt, ϵgmt) = Πg(Dmt,Wmt) + c(Z̃gmt−1) + ϵ̃gmt(Dgmt), where Πg is a real-

valued function and ϵ̃gmt(Dgmt) is the D’th component of ϵ̃gmt

Assumption 5 (Conditional Independence).

Transition probability p(·|·) factors as

p(Z̃mt−1,Wmt+1, ϵ̃mt+1|Z̃mt−1,Wmt, ϵ̃mt,Dmt) = p(ϵ̃mt+1|Wmt)p(Z̃mt−1,Wmt+1|Z̃mt−1,Wmt,Dmt).

That is, given the groups decisions at t, private information variables ϵ̃mt do not affect the

transitions of the observed covariates, and ϵ̃mt are iid across municipalities and time condi-

tional on Wmt

Assumption 6 (Normalization of Flow Profits).

If group g does not enter, their observable flow profits are normalized to zero,

Πg(0,Wmt) + c(Z̃gmt−1) = 0.

Assumption 7 (Known Discount Factor).

βg is known to the researcher.
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Under the assumptions, and those in Assumption 1, the entry game is identified. That

is, {Πg}Gg=1 and the transition probabilities p(·|·) are identified.

Assumption 4 serves three purposes. First, it separates out the unobservable component

of profits as an additively separable term, ϵ̃gmt(Dgmt). Without this separability, there is

no hope to attain a threshold crossing representation. Second, it assumes a certain type

of exclusion restriction. The rival group distances for g, which are in the vector Z̃mt−1, do

not affect group g’s flow profits. That is, only Z̃gmt−1 matters for group g’s flow profits.

Pesendorfer and Schmidt-Dengler (2008) show an exclusion restriction of this kind is needed

for identification - flow profits have to depend on group-specific variables that in turn do not

affect competitors’ flow profits. In principle, groups’ incumbency indicators Dgmt−1 could

also fulfill this role, however I focus on the instruments Z̃gmt−1 given their importance in

my application. Third, the separate term c(Z̃gmt−1) captures the idea that Z̃gmt−1 matters

insofar as it changes fixed operating costs for DTOs. It does not interact with the terms

in Πg(Dmt,Wmt) to alter flow profits. This is in line with the role the instrument Z̃gmt−1

fulfills in my analysis: it alters the probability of a group entering, but it does not affect

their operations or other choices.

Assumption 5 places structure on the evolution of the variables. First, it sets ϵ̃mt | Wmt

to be i.i.d. across municipalities and time periods, as in assumption FS1. This aspect

is redundant given my Assumption FS1, but this representation is common in dynamic

discrete choice problems, hence I keep it for familiarity. The more substantive implication of

Assumption 5 is that once we control for groups actions Dmt, the unobserved variables ϵ̃mt

do not affect the evolution of observable variables. That is, ϵ̃mt is only allowed to influence

group decisions at time t, and it does not affect future time periods.

D.2 Markov Strategies

This game has a Markov structure and I assume groups play Markov strategies. That is,

if (Z̃mt−1,Wmt, ϵ̃mt) = (Z̃ms−1,Wms, ϵ̃ms) then group g’s decisions will be identical in t, s.

This is an important restriction. Within each municipality, groups must play the same

equilibrium over time. However, groups can play different equilibria across municipalities.

Let σ = {σg(Z̃mt−1,Wmt, ϵ̃gmt)}Gg=1 be a set of of strategy functions or decision rules for each
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group. Note that the strategies depend on all groups distances Z̃mt−1, seemingly at odds with

Assumption 4. However there is no inconsistency here. While flow profits depend on DTO

specific distances, DTOs observe their rivals distances and can base their strategy on rivals’

distances. Associated with these strategy functions σ are conditional choice probabilities for

entry, i.e.

P σ
g (Dgmt | Z̃mt−1,Wmt) := P [σg(Z̃mt−1,Wmt) = Dgmt] (27)

Let πσ
g (Dgmt, Z̃mt−1,Wmt) be g’s expected profit if it chooses Dgmt and rival groups play

according to σ. By the independence of the error terms across groups, we have

πσ
g (Dgmt, Z̃mt−1,Wmt) =∑

D−gmt∈DG−1

(∏
j ̸=g

P σ
j (D−gmt[j] | Z̃mt−1,Wmt)

)
{Πg(Dgmt, D−gmt,Wmt) + c(Z̃gmt−1)}

(28)

where D−gmt is G− 1 vector the the decisions of all groups except g and where D−gmt[j] is

the j’th component of the vector. This expression is simply the expected flow profit of Dgmt

if rival groups follow strategies σ.

With this notation in hand, we can rewrite lifetime profits in Equation 26 using Bellman’s

Principle:

Ṽ σ
g (Z̃mt−1,Wmt, ϵ̃gmt) =

max
Dgmt∈{0,1}

{
πσ
g (Dgmt, Z̃mt−1,Wmt) + ϵ̃gmt(Dgmt)

+βg

∫ ∫
Ṽ σ
g (Z̃mt−1,Wmt+1, ϵ̃gmt+1)f

σ
g (Z̃mt−1,Wmt+1 | Z̃mt−1,Wmt, Dgmt)dZ̃mt−1dWmt+1

}
(29)

where fσ
g (Z̃mt−1,Wmt+1 | Z̃mt−1,Wmt, Dgmt) is the transition probability of Z̃mt−1,Wmt+1

conditional on group g choosing Dgmt and all other groups behaving according to σ. As an

additional piece of notation, consider the integrated version of Equation 29 with respect to ϵ̃,

Ṽ σ
g (Z̃mt−1,Wmt) =

∫
Ṽ σ
g (Z̃mt−1,Wmt, ϵ̃gmt)f(ϵ̃gmt | Wmt)dϵ̃gmt. These simple representations

are due to Assumption 5, which rules out any effect of ϵ̃gmt on future transitions.

We are now in a position to express the entry probabilities in the threshold crossing
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representation of Assumption 2. Note that since Dgmt ∈ {0, 1} entry will occur if the

lifetime profits of entering are larger than the lifetime profits of not entering. We can rewrite

the lifetime profits of choosing Dgmt ∈ {0, 1} as

πσ
g (Dgmt, Z̃mt−1,Wmt) + ϵ̃gmt(Dgmt) + βgE

{
Ṽ σ
g (Z̃mt−1,Wmt+1) | Dgmt, Z̃mt−1,Wmt

}
(30)

= πσ
g (Dgmt, Z̃mt−1,Wmt) + βgE

{
Ṽ σ
g (Z̃mt−1,Wmt+1) | Dgmt, Z̃mt−1,Wmt

}
︸ ︷︷ ︸

choice-specific value functions:=ṽσg (Dgmt,Z̃mt−1,Wmt)

+ϵ̃gmt(Dgmt) (31)

= ṽσg (Dgmt, Z̃mt−1,Wmt) + ϵ̃gmt(Dgmt) (32)

Where ṽσg (Dgmt, Z̃mt−1,Wmt) is simply the observable lifetime profits of choosing Dgmt given

strategies σ, which is commonly called the choice specific value function. Using this notation,

the decision rule for entry is given by:

Dgmt = 1
[
ṽσg (1, Z̃mt−1,Wmt) + ϵ̃gmt(1) > ṽσg (0, Z̃mt−1,Wmt) + ϵ̃gmt(0)

]
(33)

Dgmt = 1

ṽσg (1, Z̃mt−1,Wmt)− ṽσg (0, Z̃mt−1,Wmt)︸ ︷︷ ︸
vσg (Z̃mt−1,Wmt)

> ϵ̃gmt(0)− ϵ̃gmt(1)︸ ︷︷ ︸
ϵgmt

 (34)

Dgmt = 1
[
vσg (Z̃mt−1,Wmt) > ϵgmt

]
(35)

Which is essentially the representation in Assumption 2. Assumption 2 additionally

allows vg to vary by m with vgm. This is technically redundant given that Wmt contains

municipality indicators and can already vary by m. However, Assumption 2 makes this more

explicit and stresses that groups can have different decision rules across m. Nonetheless, we

are still missing the equilibrium concept, which I explain next

D.3 Equilibrium Concept

Given the previous notation, we can define equilibrium behavior. So far, the strategies σ have

been arbitrary. The following definition characterizes groups’ strategies as best-responses to

one another.
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Definition D.1. A stationary Markov Perfect Equilibrium (MPE) in this game is a set of

strategy functions σ∗ such that for any group and value of covariates

σ∗
g(Z̃mt−1,Wmt, ϵ̃gmt) = arg max

Dgmt∈{0,1}

{
ṽσg (Dgmt, Z̃mt−1,Wmt) + ϵ̃gmt(Dgmt)

}
(36)

That is, σ∗
g is a best response given other groups’ strategies in σ∗. In turn, equilibrium

entry decisions are given by

Dgmt = 1
[
vσ

∗

g (Z̃mt−1,Wmt) > ϵgmt

]
(37)

where I used the representation in Equation 35.

Overall, the equilibrium strategy supposes a stable Markov environment where the actions

and observables (Z̃mt−1,Wmt) are in a stationary process. This might be too strong an

assumption in my setting. For instance, some of the DTO groups came were formed during

my sample years (listed in Table A1). As I explain in Section 8.5.5, I investigate how sensitive

my results are to significant differences in DTO behavior across time. I find that the results

are qualitatively similar when we allow DTO entry decisions to be different for different time

periods. This is reassuring, since it suggests the main estimates, which assume a stationary

environment, are a good enough approximation for practical purposes.

Furthermore, notice the ancillary role played by the discount factor βg in the analysis.

Entry game models assume this factor is known and common to all groups to identify the

underlying parameters of the flow profits Π̃g. However, since my estimation routine does not

compute the underlying structural parameters of profit, the exact value of βg is largely irrel-

evant since it does not change the reduced form entry probability given by vσ
∗

g (Z̃mt−1,Wmt).

This reduced form is simply a function of observed covariates (Z̃mt−1,Wmt). Additionally

since my first stage model does allow for DTO specific effects, I can allow the βg to vary

by group as well. Overall, this implies the groups can be myopic with βg = 0 or value the

future with βg ≈ 1 and my empirical strategy is still sound.
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D.4 Municipality and Time Fixed Effects

Finally, one note on the municipality and time dummies inWmt. Because of the expectations

DTOs take before entering, accounting for municipality or time specific effects is not trivial.

Section 7.1 explains how I account for municipality fixed effects in greater detail. However,

my main specification includes time fixed effects, as in Equation 16. Formally, these time

effects need to be rationalized within the previous model. The time effects are complicated

since they may potentially inform DTOs’ expectations about the future. For instance, if

the time shocks are correlated, then a positive time effect in the current period would alter

expectations for the next period, which in turn would complicate estimation. As a result, to

be consistent with the previous dynamic model, I assume these time effects are independent

and identically distributed.

Though strong, this assumption seems like a good compromise for two reasons. First, as

discussed before, the results are overall not sensitive to allowing for different entry patterns

across time, as shown in Section 8.5.5. Second, the main reason to include the time dummies

is to transparently include them in the second stage as well. My goal is to purge the second

stage estimate of any common shocks which affected all the municipalities in each year.

Including time effects in the first and second stage is the simplest way to achieve that goal.
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